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Preface

With the development of computer technology, the finite element method has become
more and more important. At present, it has become one of the most effective methods
for solving a variety of problems arising from engineering design, industrial process con-
trol and scientific research. The aim of this book is twofold, to systematically introduce
the finite element method for solving boundary value problems and to demonstrate its
applications in engineering and medical science.

The first part of the book, including chapters 1-7, is an introduction to the finite ele-
ment method. It focuses on the mathematical and computational aspects of the finite
element method for solving elliptic and parabolic boundary value problems. The sec-
ond part of the book, chapters 8-11, demonstrates the applications of the finite element
method to the analysis of multi-phase heat transfer, electromagnetical stirring to fluid
flows, and blood flows in stenotic arteries. Some of our recent research results in these
application fields have also been included in the book.

The book was written based on our teaching and research experience in applied math-
ematical modeling using partial differential equations. Our experience has been built
into the book through the design and organization of the contents and the writing of
each chapter, section and paragraph. Our aim is to provide a text which is easy to
learn and covers all elements essential to numerical simulation using the finite element
method, and to provide a quick reference for those who use finite element method in
their research and work. The book can be used as a text for a one-semester course at
postgraduate level.

Yong Hong Wu
Benchawan Wiwatanapataphee

September, 2006
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Chapter 1

Boundary Value Problems

Modelling of most real world problems in science and engineering usually leads to a

boundary value problem (B.V.P.): a differential equation (or a set of differential equa-

tions) subject to certain initial and boundary conditions. For example, the transient

temperature field in a bounded domain Ω with convection boundary ∂Ω can be modelled

by

ρc
∂T

∂t
= k∇2T + Q(x) ∀x ∈ Ω, t ∈ [0, T ] (1.1)

subject to

k
∂T

∂n
(x) = −h(T − T∞) ∀x ∈ ∂Ω, t ∈ [0, T ] (1.2)

and initial condition

T (0,x) = T0(x) ∀x ∈ Ω, (1.3)

where Q(x) is heat source and ρ, c, k and h are constants. In this chapter, we are

concerned with the following topics

1. Classification of partial differential equations (P.D.Es).

2. Classification of boundary conditions (B.C.).

3



4 CHAPTER 1. BOUNDARY VALUE PROBLEMS

3. An overview of methods for solving boundary value problems (B.V.P.).

1.1 Classification of Differential Equations (2nd or-
der)

Definition 1.1.1 A differential equation is said to be

- linear if it is a linear equation of the unknown function and its derivatives,

auxx + buyy + cux + du = Q;

- quasi-linear if all the highest derivative terms are linear but some of the lower

order derivatives are non-linear,

auxx + bu2
x = f(x, y, u);

- non-linear if the equation is neither linear nor quasi-linear,

uxx + 2u2
xy + bu = Q(x, y).

Most partial differential equations arising from real world problems are second order

and thus we will focus only on second order equations. The general form of the second

order quasi-linear partial differential equation is

auxx + buxy + cuyy + h(x, y, u, ux, uy) = 0,

which can be classified into three categories according to the value of b2 − 4ac,

• elliptic : b2 − 4ac < 0

• parabolic : b2 − 4ac = 0
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• hyperbolic : b2 − 4ac > 0

Example 1.1

1) poisson equation

∇2u = σ

is elliptic (a = c = 1, b = 0);

2) diffusion equation
∂u

∂t
=

∂2u

∂x2

is parabolic (a = 1, b = c = 0);

3) wave equation
∂2u

∂t2
= α2 ∂2u

∂x2

is hyperbolic (a = α2, b = 0, c = −1).

Remarks: If a,b and c are functions of x, y and u, the equation may change its type

from one region to the other in the computation domain.

Example 1.2 The following partial differential equation

(1−M2(x, y))
∂2φ

∂x2
+

∂2φ

∂y2
= 0

may change its type from one sub-domain to the other. It can be classified as

1) elliptic equation if M(x, y) < 1;

2) parabolic equation if M(x, y) = 1;

3) hyperbolic equation if M(x, y) > 1.
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1.2 Boundary and Initial Conditions

If we do not distinguish between time and space as independent variables, an initial

condition can also be regarded as a boundary condition. For real world problems,

usually, we know the value of the unknown function and/or its derivatives on part of

the boundary ∂Ω. As the solution must satisfy the boundary conditions, we have to

solve the partial differential equation in Ω subject to the boundary conditions on ∂Ω.

Boundary conditions are usually of the following types:

• Dirichlet type (also called essential boundary condition in finite element method)

eg. u = û on ∂Ω

• Neumann type (natural boundary condition)

eg. ∂u
∂n = σ̂ on ∂Ω

• Robin type (mixed or general boundary condition)

eg. α ∂u
∂n + ku = f, α 6= 0, k 6= 0, on ∂Ω

Boundary value problems are classified based on the type of partial differential equations

and the type of boundary conditions. For example, a boundary value problem defined

by an elliptic equation and a Neumann boundary condition is called a Neumann elliptic

problem.

1.3 Methods of Solution

In general, a boundary value problem of an unknown function u can be written as

L(u) = f(x) in Ω (1.4)
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B(u) = g(x) on ∂Ω (1.5)

where f(x) and g(x) are known functions, L denotes a linear or nonlinear differential

operator and B is a boundary operator.

To solve a boundary value problem is to find the unknown function u that sat-

isfies the differential equation in Ω and the boundary conditions on ∂Ω. There are

many alternative approaches available for solving linear and nonlinear boundary value

problems, ranging from completely analytical to completely numerical. Of these, the

following approaches deserve attention:

Direct Integration (yielding exact solutions)

• Separation of variables;

• similarity solutions;

• Fourier and Laplace transformations;

Approximate Solution Methods

• Perturbation, Power series, Probability schemes (Monte Carlo);

• The method of characteristics for hyperbolic equations;

• Finite difference technique;

• Ritz method;

• Boundary element method;

• Finite element method.



8 CHAPTER 1. BOUNDARY VALUE PROBLEMS

Remarks:

1) Only for very simple problems, it is possible to obtain an exact solution by direct

integration of the differential equations.

2) The Power series method is powerful, but since the method requires generation

of a coefficient for each term in the series, it is relatively tedious.

3) The perturbation method is applicable primarily when the nonlinear terms in the

equation are small in relation to the linear terms.

4) The probability schemes (Monte Carlo Method) are used for obtaining a statistical

estimate of a desired quantity by random sampling. These methods work best

when the desired quantity is a statistical parameter and sampling is done from a

selective population.

5) With the advent of high-speed computers, it appears that the three currently

outstanding methods for obtaining approximate solutions of high accuracy are

the finite difference method, the finite element method and the boundary element

method. The finite difference method usually is only applicable to problems

with simple geometry. The boundary element method is a more efficient and

accurate method, which usually reduces the dimensionality of the problem by

one. However, the application of the boundary element method requires a singular

solution to the problem, which limits its application. The finite element method

is a more general and versatile method. In principle, any problem, which can be

solved by the finite difference method or the boundary element method, can also

be solved by the finite element method.
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In this book, we focus on the finite element methods for the solution of boundary value

problems and their applications in fluid dynamic and heat transfer simulation.
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Chapter 2

General Finite Element
Formulation

The finite element method is a numerical technique for obtaining approximate solutions

to boundary value problems. To find a solution u to a boundary value problem defined

in domain Ω using the finite element method, we perform the following steps:

1. Discretize the computation domain Ω into a finite number of elements with N

nodes, so that Ω = ∪E
e=1Ωe, and then take the values of u at these nodes as basic

unknowns;

2. Transform the boundary value problem to a set of finite element equations;

3. Obtain coefficient matrices for each element;

4. Assemble each element matrix to form a global matrix;

5. Solve the global matrix equations which may be a system of algebraic equations

(or ordinary differential equations) of ui (i = 1, N)

11



12 CHAPTER 2. GENERAL FINITE ELEMENT FORMULATION

The derivation of finite element equations is usually based on one of the following

approaches:

• direct approach,

• variational approach,

• weighted residual approach,

• energy balance approach.

Remarks:

1) The direct approach can be used only for very simple problems (simple element

shape).

2) The variational approach is a more general approach. It relies on the calculus of

variations and we need to find a functional J(u) corresponding to the boundary

value problem such that the solution of the boundary value problem becomes :

find the unknown function u such that the functional J(u) is minimized. For

problems in solid mechanics, the functional turns out to be the potential energy

or some other physical quantities, and thus the method can be used. However,

the approach is not applicable to those problems for which we do not have an

associated functional (either has not been discovered or does not exist).

3) The weighted residual approach is a relative new and even more general and

versatile method. It advantages the variational approach because it makes it

possible to extend the finite element method to problems where no functional is

available.
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2.1 Classical Statements

The classical statement of a typical boundary value problem is:

Find a function u(x) such that

L(u)− f(x) = 0 x ∈ Ω,

B(u)− g(x) = 0 x ∈ ∂Ω (2.1)

where Ω is the domain of the real-valued functionu(x)
∂Ω is the boundary ofΩ
L and B are respectively differential and boundary operators.

Example 2.1 Two - point boundary value problem:

Find u such that
{

uxx = f(x) x ∈ (a, b)

u(a) = A, u(b) = B

Example 2.2 Two-dimension heat transfer problem:

Find T such that

∇ · (k∇T ) = f in Ω

T = T∞ on ∂Ω1

−k
∂T

∂n
= h(T − T∞) on ∂Ω2.

where ∂Ω = ∂Ω1 ∪ ∂Ω2 is the boundary of Ω.
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2.2 Variational Statements

The variational statement of a boundary value problem is the integral representation of

the problem. Consider the boundary value problem (2.1) with the approximate solution

u(x). We can define the local residual error r by

r(x) = L(u(x))− f(x). (2.2)

By multiplying the local residual error r(x) by a weighting function v(x) and integrating

the weighted residual error over Ω, we obtain the total weighted residual error. Setting

the total weighted residual error to zero, we obtain the following variational statement:

Find u(x) ∈ H̃ such that
∫

Ω

vr(x) dΩ =
∫

Ω

v(L(u)− f(x)) dΩ = 0 ∀v ∈ H, (2.3)

where v is known as weighting function or test function,
H is a linear space containing the set of all functions which are sufficiently

well behaved that the above integral makes sense,

H̃ is a linear space containing the set of all trial (admissible) functions to
which the solution u belongs.

The statement (2.3) is called a variational statement as the weighting function v is

allowed to vary arbitrarily.

Remarks :

1) The variational statement (2.3) is equivalent to the classical statement (2.1).

2) The specification of the set H̃ of trial functions and the set H of test functions

is an essential ingredient of an acceptable variational statement. The smoothness

requirement demands that H̃ and H must be such chosen that vL(u) is integrable

over Ω for any functions u and v chosen from H̃ and H respectively.
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3) Often by applying integration by part (or Green’s formula) to the integral expres-

sion of equation (2.3), we can obtain expression containing lower-order derivatives

of u(x). That is, the order of derivatives of u can be reduced and (2.3) often be-

comes
∫

Ω

P (u, v) dΩ +
∫

∂Ω

Q(u)v ds = 0.

The smoothness requirement on u(x) is thus weakened and so the integral repre-

sentation is also called the weak statement.

4) When integration by part is possible, it also offers a convenient way to introduce

some of the boundary conditions.

Example 2.3 Find the variational statement of the following boundary value problem

uxx − f = 0, x ∈ (a, b)

u(a) = 0, ux(b) = g.

Sol

From the given differential equation, the residual error function is deter-

mined by

r(x) = uxx − f.

Thus, the total weighted residual error is

R =
∫ b

a

vr dx =
∫ b

a

v(uxx − f) dx = −
∫ b

a

(uxvx + fv) dx + uxv(x)|ba
(2.4)

Hence, the variational statement takes the following form:
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Find u from a suitable class of admissible functions such that
∫ b

a

(uxvx + fv) dx− uxv|ba = 0 (2.5)

for all test functions in a suitable class of functions, H.

To identity the suitable class of functions, we consider the following two points:

Smoothness requirement on u and v

For the integral (2.5) to be well defined, it is sufficient to take u and v to be

members of a class of functions whose derivatives of order 1 and less are square-

integrable over Ω. Thus in this case,

H̃ = H = {v : v and vx are square integrable over Ω}.

Note : a function g is said to be square -integrable if
∫

Ω

g2dΩ < ∞.

Boundary restriction on u and v

As ux(a) is not given, we need to eliminate ux(a)v(a) from the variational state-

ment. For this purpose, we choose v(a) = 0. In other words, we let v to be a

member of the space H0 defined by

H0 = {v : v ∈ H and v(a) = 0}.

Therefore, the variational statement is:

Find u ∈ H0 such that
∫ b

a

(uxvx + fv)dx− g(b)v(b) = 0 ∀v ∈ H0

where H and H0 are as defined before.
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2.3 Weighted Residual Techniques

Now we consider our general problem in variational form:

Find u ∈ H̃ such that

∫

Ω

P (u, v)dΩ +
∫

∂Ω

Q(u)v ds = 0

or

∫

Ω

(L(u)− f)v dΩ = 0, ∀v ∈ H. (2.6)

In general, both u and v may belong to a large (infinite dimension) class of functions,

i.e.

u(x) =
∞∑

i=1

αiφi(x), v(x) =
∞∑

i=1

βiwi(x) (2.7)

where φi(x) and wi denote the basis functions for H̃ and H.

The process of finding a solution from these broad classes without a constructive

method is remote and we thus turn to find a numerical approximation. In numerical

approximation, we pose the variational problem in the N -dimensional subspaces H̃h

and Hh of H̃ and H, respectively. Thus, our problem becomes:

Find uN ∈ H̃h such that

∫

Ω

P (uN , vN ) dΩ +
∫

∂Ω

Q(uN )vN ds = 0 ∀vN ∈ Hh. (2.8)

Recall that the integral in (2.8) represents the total weighted residual error over Ω. We

can state our method for solving the boundary value problem by

Seek for an approximation solution u such that the total weighted residual

error (with weighting function vN ) over Ω vanishes.

This method is called the weighted residual technique.
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As uN ∈ H̃h and vN ∈ Hh, we have

uN =
N∑

j=1

αjφj(x), vN =
N∑

i=1

βiwi(x). (2.9)

Thus, the integral equation (2.8) becomes

∫

Ω

P (uN ,

N∑

i=1

βiwi) dΩ +
∫

∂Ω

Q(uN )
N∑

i=1

βiwi ds = 0.

Assuming that P (u, v) is a bilinear form of u and v, we have

N∑

i=1

[∫

Ω

P (uN , wi) dΩ +
∫

∂Ω

Q(uN )wi

]
βi ds = 0. (2.10)

Because βi are arbitrary, (2.10) represents N equations to be satisfied by the αi defining

uN rather than the single equation it may appear to be. To see this, consider the natural

choice for the parameters βi.

For β1 = 1, βi = 0 ∀i 6= 1, (2.10) becomes

∫

Ω

P (uN , w1) dΩ +
∫

∂Ω

Q(uN )w1 ds = 0.

For β2 = 1, βi = 0 ∀i 6= 2, (2.10) becomes

∫

Ω

P (uN , w2) dΩ +
∫

∂Ω

Q(uN )w2 ds = 0.

Continuing in this way, we can obtain N equations. Thus, the problem now becomes:

Find α = (α1, α2, . . . , αN ) ∈ RN such that

∫

Ω

P (
N∑

j=1

αjφj , wi) dΩ +
∫

∂Ω

Q(
N∑

j=1

αjφj)wi ds = 0 (i = 1, 2, . . . , N). (2.11)

Remarks :

1) The form of error distribution over Ω depends on our choice for the weighting

function wi(x). Once wi are specified, equations (2.11) represent a system of
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N equations (either algebraic equations or ordinary differential equations) which

can then be solved to find αi and then, the approximate representation of the

unknown variable field u(x) can be determined via (2.9).

2) We have a variety of weighted residual techniques because of the broad choice of

weighting functions that we can use.

2.3.1 Point Collocation

In this technique, the weighting function is taken to be

wi = δ(x− xi), x,xi ∈ Ω

where δ is the Direc delta function having the following properties

δ(x− xi) =
{

0 x 6= xi

∞ x = xi

∫

Ω

G(x)δ(x− xi) dΩ = G(xi).

Thus, the total weighted residual error is

∫

Ω

r(x)δ(x− xi) dΩ = r(xi). (2.12)

Hence, setting the total weighted residual error to zero for wi = δ(x−xi) is equivalent

to making the local residual error to zero at the point xi. This means that in the point

collocation technique the local residual error is forced to be zero at a number of chosen

points xi (i = 1, N).

2.3.2 Subdomain Collocation

In this technique, the weighting function is chosen to be
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wi =
{

1 x ∈ 4Ωi

0 otherwise

Thus, the total weighted residual error for corresponding to the above weighting func-

tion is ∫

Ω

r(x)wi dΩ =
∫

4Ωi

r(x) dΩ.

Hence, setting the total weighted residual error corresponding to the above weighting

function is to make the integrated error over the element 4Ωi to be zero. This means

that in the subdomain collocation technique, the integrated error over each of the N

subregions of the domain is forced to be zero.

2.3.3 The Galerkin Method

The error distribution principle most often used to derive finite element equations is

known as the Galerkin criterion or Galerkin’s method. According to the Bubnov-

Galerkin (or Galerkin) method, the weighting functions are chosen to be the same as

the basis functions used to represent u, that is

wi(x) = φi(x), i = 1, 2, . . . , N.

When wi 6= φi, the approach is called the Petrov-Galerkin method. Thus, to solve a

boundary value problem using the Galerkin’s method is to

find α = (α1, α2, . . . , αN ) ∈ RN such that

∫

Ω

P




B∑

j=1

αjφj , φi


 dΩ +

∫

∂Ω

Q




N∑

j=1

αjφj


φi ds, (i = 1, 2, . . . , N),

(2.13)

where {φi} are the basis functions of Hh.
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Example 2.4 Find the Galerkin approximation for the following variational problem.

Find u ∈ H0 such that

∫ b

a

(uxvx + fv) dx− g(b)v(b) = 0, ∀v ∈ H0,

where H0 is as defined in example 2.3.

Sol

To find the Galerkin’s approximation, we choose an N dimensional subspace

of functions Hh ⊂ H0 with basis functions {φ1, φ2, . . . , φn}. Then the

problem is

Find uN ∈ Hh such that

∫ b

a

{[∑N
1 αjφj(x)

]′
φ′i + fφi

}
dx− g(b)φi(b) = 0

⇒ ∑N
j=1

[∫ b

a
φ′iφ

′
j dx

]
αj = − ∫ b

a
fφi dx + g(b)φi(b)

⇒ ∑N
j=1 Kijαj = Fi (i = 1, 2, . . . , N),

where Kij =
∫ b

a
φ′iφ

′
jdx, Fi = − ∫ b

a
fφidx + g(b)φi(b).

Remarks :

1) The system of equations KA = F has unique solution.

Proof : Let α = (α1, α2, . . . , αN ) 6= 0

αKα =
N∑

i,j=1

αiKijαj =
∫ b

a

N∑

i=1

αiφ
′
i

N∑

j=1

αjφ
′
jdx =

∫ b

a

v′v′dx ≥ 0

with equality only if v′ = 0 (v = constant).

Now as v(a) = 0, v′ = 0 if and only if v = 0 or α = 0.
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Therefore, K is positive definite and thus KA = F has a unique solution.

Note: A symmetric matrix A is positive definite if

η ·A · η =
N∑

i,j=1

ηiAijηj > 0 ∀η ∈ RN , η 6= 0

2) if φi(x) are determined, the determination of αj is then just a computational

matter.

2.4 Finite Element Approximation

While Galerkin’s method provides an elegant strategy for constructing approximations

of solutions to boundary value problems, it has some serious shortcoming:

1) In the method as we have described, there is no systematic way of constructing

reasonable basis functions φi . Aside from being independent members of Hh,

they are arbitrary. The analyst is left with a bewildering number of possibilities

at his disposal and with the discomforting knowledge that the quality of his

approximate solution will depend very strongly on the properties of the basis

functions chosen. Moreover a poor choice of φi may produce an ill-conditioned

system of equations.

2) For essential boundary condition u(x) = g(x) ∀x ∈ ∂Ω, the test function φi must

be designed to fit the boundary condition which is very difficult for domain with

complex geometry.

For the above reasons, the classical Galerkin method is of rather limited use. These

substantial difficulties can be resolved by using the finite element method. The finite
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element method provides a general and systematic technique for constructing basis

functions for the Galerkin approximation of boundary value problems. The main idea

is that the basis functions can be defined piecewisely over subregions of the domain

called finite elements and that over each element, φi can be chosen to be very simple

functions such as polynomials of low degree.

Thus, to find a finite element solution, we firstly divide Ω into E subregions

called elements. Then choose N points called nodes where the values of u are taken as

basic unknowns.

Example 2.5 Let Ω = {x : x ∈ [0, 1]} and

• divide Ω into 4 elements with 5 nodes as shown

Figure 2.1: Domain with 4 elements 5 nodes

• use the values of u at nodes as basic unknowns, i.e. the unknowns now are

ui = u(xi) (i = 1, 2, 3, 4, 5).

To identify the collection of elements and nodes (mesh), we need to do the following

steps:

• number elements and nodes globally as shown in Figure 2.1;

• identify each individual element, i.e., record which nodes are contained in the

element.
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Suppose that there are M nodes in an element Ωe, we denote these nodes

{Ne
1 , Ne

2 , . . . , Ne
M}.

For example, in example 2.3, element 2 contains two nodes:

N2
1 = 2, N2

2 = 3.

In the next step, we choose the global interpolating function φi(x) in such a way that

(1)

φi(xj) =
{

1 i = j

0 i 6= j
(2.14)

(2) φi(x) = 0 on elements that do not contain node i

In example 2.5, the basis functions φ1(x) and φ2(x) are as shown below.

Figure 2.2: Element shape functions φi(x).

For convenience in discussion, we denote the part of φi(x) on element e by φe
i . Thus,

φi = ∪φe
i ,

where e denotes any element around the node i. For the example 2.5, we have

φ2 = φ1
2 ∪ φ2

2.
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In the following, we give an interpretation of φe
i . With properties (1) and (2) above,

the interpolating formula becomes

uN (x) =
N∑

j=1

ujφj(x). (2.15)

As φj(x) are defined piecewise, uN (x) is also a piecewise function. Now consider a

typical element Ωe with M nodes {Ne
1 , Ne

2 , . . . , Ne
M}. Within Ωe

ue
N (x) =

N∑

j=1

ujφj(x).

From (2.14), only those φj with node j in Ωe have contribution to uN (x).

Suppose the element Ωe has M nodes {N2
1 , N2

2 , . . . , Ne
M}. Then ue

N (x) =
∑M

1 uNe
i
φe

Ne
i

which, for simplicity, can be written as

ue
N (x) =

M∑
1

ue
i φ

e
i . (2.16)

eg. for Ω2, u2
N (x) =

∑2
1 u2

i φ
2
i = u2φ

2
2 + u3φ

2
3.

From (2.16), φe
i is the local interpolating function defined on Ωe. As Ωe is a small

region, we can use simple function, such as low degree polynomial, for φe
i .

Now, it is clear that, the global φi(x) is the assembly of local interpolation functions

φe
i (x). As φi(x) is defined piecewise over each Ωe, system (2.13) can be rewritten as

E∑
e=1

∫

Ωe

P

(
N∑
1

ujφ
e
j , φ

e
i

)
dΩ +

∂E∑
e=1

∫

Ωe

Q

(
N∑
1

ujφ
e
j

)
φe

i ds = 0 (i = 1, 2, . . . , N).

Remarks:

1) To ensure the regularity of the integrals in the variational statement, choosing

proper classes of admissible functions for the solution u and the weighting function

v is an important step in solving the problem using finite element method.
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2) We often include boundary conditions in our definitions of Sobolev spaces. eg.

We define

H1
0 =

{
v ∈ H1(0, 1) | v = 0 at x = 0

}
.

Thus, the global equations can be constructed by assembling the contributions from

each of the elements. Hence, in summary, to solve a boundary value problem using the

finite element method, we need to perform the following steps

1) Discretise Ω,

2) Choose local element shape function φe
i (x),

3) Construct the global equations by assembling contributions from each of the ele-

ments,

4) Impose the boundary conditions,

5) Solve the system of equations for ui,

6) Determine the field variable via (2.16).

2.5 Classes of Admissible Functions

This section introduces some functional spaces which are important in solving boundary-

value problems and are frequently referenced in finite element formulation. The un-

known function u and test function v must be chosen from certain classes of functional

spaces.



2.5. CLASSES OF ADMISSIBLE FUNCTIONS 27

2.5.1 Spaces of continuous functions Cm(Ω)

Suppose Ω is a bounded region in R3, u = u(x, y, z) is a real-valued function in Ω, then

u is said to be of class Cm in Ω (or to belong to Cm(Ω), or to be a Cm-function) if u

and all of its derivatives of order ≤ m are continuous at every point in Ω. Thus, Cm(Ω)

is defined by

Cm(Ω) =
{

v = v(x, y, z)|v,
∂v

∂x
,
∂v

∂y
,
∂v

∂z
,
∂2v

∂x2
, . . . ,

∂vm

∂xm
,

∂mv

∂y∂xm−1
, . . . ,

∂mv

∂zm

are continuous in Ω ⊂ R3
}

• The class Cm(Ω) is a linear space of functions. That is, if u ∈ Cm(Ω) and

v ∈ Cm(Ω), then αu + βv ∈ Cm(Ω) for any real scalars α and β.

• For a nonempty set Ω, the set F(Ω) of all real functions defined in Ω is a linear

space with the following properties

(u + v)(x) = u(x) + v(x) ∀x ∈ Ω

(αv)(x) = αv(x) ∀x ∈ Ω

• For an open subset Ω of <n, the subset in F(Ω) which are continuous is a subspace

of F(Ω) and is denoted by C0(Ω).

Definition 2.5.1

C0(Ω̄) = {v ∈ C0(Ω) : v is bounded and continuous in Ω} (2.17)

with the norm

‖v‖C0(Ω̄) = supx∈Ω|v(x)|. (2.18)
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Definition 2.5.2

Ck(Ω̄) = {v ∈ Ck(Ω) : Dαv ∈ C0(Ω̄) for |α| ≤ k} (2.19)

with seminorm and norm:

|v|Ck(Ω̄) =
∑

|α|=k

‖Dαv‖C0(Ω̄) (2.20)

‖v‖Ck(Ω̄) =
k∑

j=0

|v|Cj(Ω̄) =
∑

|α|≤k

‖Dαv‖C0(Ω̄). (2.21)

Consider the function u(x), v(x) = u′(x), w(x) = u′′(x), x ∈ [0, a] as shown in Fig.

2.3. It is clear that w has a jump discontinuity at the point x0 and v is continuous,

which means u /∈ C2([0, a]), u ∈ C1([0, a]) and v ∈ C0([0, a]).

Figure 2.3: Function u(x) and its derivatives

Definition 2.5.3 A function v on Ω is called Hölder-continuous of order λ for 0 < λ ≤ 1

iff there exists M > 0 such that |v(x)− v(y)| ≤ M |x− y|λ, ∀x, y ∈ Ω.
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• if λ = 1, the 1-Hölder-continuous functions are called Lipschitz-continuous func-

tions.

• the λ-Hölder continuity implies uniform continuity [take δ = (ε/M)1/λ]. Hence

bounded λ-Hölder continuous functions belong to C0(Ω̄).

Definition 2.5.4 For 0 < λ ≤ 1, we have

C0,λ(Ω̄) = {v ∈ C0(Ω̄) : v is λ− Hölder continuous in Ω} (2.22)

with the following seminorm and norm:

|v|C0,λ(Ω̄) = supx,y∈Ω,x6=y|v(x)− v(y)||x− y|−λ, (2.23)

‖v‖C0,λ(Ω̄) = ‖v‖C0(Ω̄) + |v|C0,λ(Ω̄). (2.24)

Definition 2.5.5 For k ∈ N and 0 ≤ λ ≤ 1, we set

Ck,λ(Ω̄) = {v ∈ Ck(Ω̄) : Dαv ∈ C0,λ(Ω̄) for |α| ≤ k} (2.25)

with the following seminorm and norm:

|v|Ck,λ(Ω̄) =
∑

|α|=k

|Dαv|C0,λ(Ω̄), (2.26)

‖v‖Ck,λ(Ω̄) =
∑

|α|≤k

‖Dαv‖C0,λ(Ω̄) (2.27)

Definition 2.5.6 For k ∈ N and 0 ≤ λ ≤ 1, we set

Ck,λ(Ω) = {v ∈ Ck(Ω) : v|Ω1 ∈ Ck,λ(Ω̄1) for every Ω1 ⊂⊂ Ω} (2.28)

Remarks:

• Notation Ω1 ⊂⊂ Ω means that Ω1 and Ω are open, Ω1 is bounded, and Ω̄1 ⊂ Ω;
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• C0,0(Ω̄) = C0(Ω̄) and Ck,0(Ω) = Ck(Ω).

Definition 2.5.7 We set

C∞(Ω) = {v ∈ C0(Ω) : v ∈ Ck(Ω) ∀k} (2.29)

C∞(Ω̄) = {v ∈ C0(Ω̄) : v ∈ Ck(Ω̄) ∀k} (2.30)

If V is any linear space and Ω is an open set in <n, then a function v : Ω → V is a

compact support function iff there exists Ω1 ⊂⊂ Ω such that v vanishes outside Ω1.

Definition 2.5.8 We set

C∞0 (Ω) = {v ∈ C∞(Ω) : v is a compact support function}. (2.31)

2.5.2 Banach spaces

Definition 2.5.9 A normed space V is called a Banach space iff every Cauchy sequence

in V has a strong limit in V .

For example,

1) <n with the norm ‖x‖1 =
∑ |xi| is a Banach space.

2) <n with the Euclidean norm ‖(x1, . . . , xn)‖ = (
∑

x2
i )

1/2 is a Banach space.

3) If Vi(i = 1, . . . , n) are Banach spaces with norms ‖ · ‖Vi , then V = V1 × . . .× Vn

is a Banach space with norm

‖(V1, . . . , Vn)‖ = (
∑

‖vi‖2Vi
)1/2.

Definition 2.5.10 A Banach space is called separable iff it contains a finite or countably

infinite set A, such that span A is dense.
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2.5.3 Hilbert spaces

Definition 2.5.11 A Banach space V is called a Hilbert space if the mapping

v → ‖v‖2

is a quadratic form on V .

Definition 2.5.12 In a Hilbert space, there exists a unique symmetric bilinear form

u, v → (u, v)V ≡ 1
4
(‖u + v‖2 − ‖u− v‖2) (2.32)

such that (v, v)V = ‖v‖2 for all v in V . The bilinear symmetric bilinear form (2.32) is

called the scalar product.

For example,

1) <n with the Euclidean norm

‖(x1, . . . , xn)‖ = (
∑

x2
i )

1/2

is a Hilbert space.

2) If Vi(i = 1, . . . , n) are Hilbert spaces with norms ‖ · ‖Vi , then V = V1 × . . . × Vn

is a Hilbert space with norm

‖(V1, . . . , Vn)‖ = (
∑

‖vi‖2Vi
)1/2.

The corresponding scalar product is given by

(v, w)V =
∑

(vi, wi)Vi .
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Basic Properties of Hilbert Spaces

Let V be a Hilbert space, then

• |(u, v)| ≤ ‖u‖‖v‖ ∀u, v ∈ V —- Schwarz inequality.

• for each u ∈ V , consider the mapping Ju : V → < defined by

Ju : v → (u, v) ∀v ∈ V.

The map u → Ju is an isometric isomorphism from V to V ′.

• V ′ is a Hilbert space.

• ∀f ∈ V ′ ∃u(= J−1f) such that

V ′ (f, v)
V

= (u, v)
V

∀v ∈ V

implies vn ⇀ v0 iff limn→∞(vn, v) = (v0, v) for all v ∈ V

• Every Hilbert space is reflexive.

2.5.4 Distributions

Definition 2.5.13 Given vk, v ∈ C∞0 (Ω) , {vk} converges to v ∈ D(Ω) iff there exists

a bounded closed set K ⊂ Ω such that vk vanishes outside K for any k, and for every

α,

Dαvk → Dαv

uniformly in Ω.

Definition 2.5.14 A distribution on Ω is a linear functional L on D(Ω) which is

continuous in the sense that

vk → v ∈ D(Ω) implies L(vk) → L(v).
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We define

D′(Ω)
< L, v >D(Ω) = L(v), (2.33)

for L ∈ D′(Ω) and v ∈ D(Ω). If Di = ∂/∂xi, u ∈ C1(Ω), and v ∈ D(Ω), Green formula

gives ∫

Ω

Diu · vdx = −
∫

Ω

u ·Divdx

Definition 2.5.15 We define

D′< Diu, v >D = −D′< u, Div >D (2.34)

Definition 2.5.16 For higher-order derivative

D′< Dαu, v >D = (−1)|α| D′< u,Dαv >D (2.35)

The sequence {uk} is converging to u in D′ iff

D′< uk, v >D → D′< u, v >D , ∀v ∈ D(Ω) (2.36)

Note: The sequence {uk} is converging to u in D′ (uk → u ∈ D′(Ω)) implies Dαuk →

Dαu ∈ D′(Ω) for all α.

2.5.5 The p-integrable spaces Lp(Ω)

Definition 2.5.17 A function v ∈ F(Ω) is called measurable iff a sequence of func-

tions vn ∈ C0(Ω) exists such that vn → v almost everywhere in Ω.

Let M(Ω) denote the set of measurable functions which is a linear space, for u, v ∈

M(Ω) and f ∈ C0(<), we have

• The composition f ◦ u ∈M(Ω);
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• u+, u−, |u|p ∈M(Ω) for p > 0;

• If u = v almost everywhere then f ◦ u = f ◦ v almost everywhere;

• If the Lebesgue integral
∫
Ω
|v|p = 0 then v = 0 almost everywhere.

By definition we can conclude that every continuous function is measurable: C0(Ω) ⊂

M(Ω).

Note Any set where vn(x) does not converge to v(x) as n → ∞ has zero Lebesgue

measure.

Definition 2.5.18 Lp(Ω) is a subspace of measurable space defined by:

Lp(Ω) =
{

u ∈M(Ω) :
∫

Ω

|u(x)|p dx < ∞
}

(2.37)

with the norm

‖u‖
Lp(Ω) =

(∫

Ω

|u|p
)1/2

. (2.38)

Note: For u, v ∈ M(Ω), u = v almost everwhere does not imply that sup u = sup v

and inf u = inf v.

Definition 2.5.19 For v ∈ L∞(Ω), we set

L∞(Ω) = {v ∈M(Ω) : v is bounded} (2.39)

with the norm

‖v‖
L∞(Ω) = ess supΩ|v|. (2.40)

where

ess supΩ v = ess supx∈Ω v(x)

= inf{M ∈ (−∞, +∞] : v(x) ≤ M

almost everywhere in Ω} (2.41)
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and

ess infΩ v = ess infx∈Ω v(x)

= sup{M ∈ [−∞, +∞) : v(x) ≥M

almost everywhere in Ω}. (2.42)

Space Properties

• For 1 ≤ p ≤ ∞, Lp(Ω) is a Banach space.

• Lp(Ω) is separable iff 1 ≤ p < ∞

• Lp(Ω) is a Hilbert space iff p = 2. The scalar product is given by

(u, v)
L2(Ω)

=
∫

Ω

uv dΩ. (2.43)

• Let p, p1, . . . , pm ∈ [1,∞] and
∑

p−1
i = p−1 (with ∞−1 = 0). If vi ∈ Lpi(Ω) for

i = 1, . . . , m, then the function
∏

vi belongs to Lp(Ω) and

∥∥∥
∏

vi

∥∥∥
Lp(Ω)

≤
∏

‖vi‖Lpi (Ω)
(Hölder’s inequality) (2.44)

For example,

1) if
∑

p−1
i = 1, then ∣∣∣∣

∫

Ω

∏
vidΩ

∣∣∣∣ ≤
∏

‖vi‖Lpi (Ω)
(2.45)

and with m = 2 we have
∣∣∣∣
∫

Ω

uv dΩ
∣∣∣∣ ≤ ‖u‖

Lq(Ω)‖v‖Lq′ (Ω)
∀u ∈ Lq, ∀v ∈ Lq′ , (2.46)

where the number q′ is the conjugate of q and

1
q

+
1
q′

= 1. (2.47)
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2) If q = 2, equation (2.46) is the Schwarz inequality.

For u ∈ Lp′(Ω) and v ∈ Lp(Ω), by (2.46), the map L(u) : v → ∫
uv dx is continuous on

Lp(Ω). Thus, L(u) ∈ (Lp(Ω))′ and the map u → L(u) is one-to-one, linear, isometric

from Lp′(Ω) into (Lp(Ω))′. For 1 ≤ p < ∞, u ∈ Lp′(Ω) and v ∈ Lp(Ω), we write

(Lp)′ < u, v >
Lp =

∫

Ω

uv dx (2.48)

2.5.6 The Sobolev spaces W k,p(Ω

Definition 2.5.20 For a nonnegative integer k and p satisfying 1 ≤ p ≤ ∞, the Sobolev

space W k,p(Ω) of order (k, p) is the linear space of functions in Lp(Ω) whose distribution

derivatives Dαu of all order |α| such that 0 ≤ |α| ≤ k are in Lp(Ω):

W k,p(Ω) = {u | Dαu ∈ Lp(Ω) for 0 ≤ |α| ≤ k} (2.49)

The spaces W k,p(Ω) are generally endowed with the norms

‖u‖k,p,Ω =




∫

Ω

∑

0≤|α|≤k

|Dαu(x)|p dx




1/p

=


 ∑

0≤|α|≤k

‖Dαu‖p
Lp(Ω)




1/p

, 1 ≤ p < ∞ (2.50)

‖u‖k,∞,Ω = max0≤|α|≤k
‖Dαu(x)‖L∞(Ω)

and seminorm

|u|k,p,Ω =




∫

Ω

∑

|α|=k

|Dαu(x)|p dx




1/p

. (2.51)

We also denote

W k,p
0 (Ω) = the closure of C∞0 (Ω) in W k,p(Ω)

Hk(Ω) = W k,2(Ω); Hk
0 (Ω) = W k,2

0 (Ω) (2.52)
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and

W 0,p(Ω) = W 0,p
0 (Ω) = Lp(Ω). (2.53)

The scalar product in Hk(Ω) is given by

(u, v)
k,Ω =

∑

|α|≤k

∫

Ω

Dαu ·DαvdΩ. (2.54)

The sequence {vm} is converging to v in W k,p(Ω) (vm → v ∈ W k,p(Ω)) iff Dαvm →

Dαv ∈ Lp(Ω) for |α| ≤ k.

Note: The norm defined in (2.51) is a Hilbert norm iff p = 2.

A function v is in the class Hm(Ω) if v and all of its partial derivatives of order ≤ m

are members of the class L2(Ω). Compactly, we write for Ω ⊂ R2,

Hm(Ω) =
{

v | v,
∂v

∂x
,
∂v

∂y
, . . . ,

∂mv

∂zm
∈ L2(Ω)

}

The class Hm(Ω) is a linear space of functions : if u ∈ Hm(Ω) and v ∈ Hm(Ω),

then αu + βv ∈ Hm(Ω) for any real scalars α and β.

The Sobolev class Hm(Ω) is a natural generalization of the Cm-class for quanti-

fying the smoothness or regularity of functions. In Fig 2.3, u is not in C2([0, a]) since

u′′ is discontinuous at x = x0. However, w = u′′ is certainly square-integrable, thus

u ∈ H2(0, a).

Similarly, v′ ∈ H1(0, a), and w = u′′ ∈ H0(0, a).

Major properties of Hm(Ω)

• Linearity : Hm(Ω) is a linear space.

This means that if u and v are in Hm(Ω), then their combinations αu + βv are

also in Hm(Ω).
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• Orthogonality : An inner product can be defined in Hm(Ω). For example, the

scalar

(u, v)m ≡
∫ 1

0

(
dmu

dxm

dmv

dxm
+

dm−1u

dxm−1

dm−1v

dxm−1
+ . . . +

du

dx

dv

dx
+ uv

)
dx

defines an inner product on Hm(0, 1).

• Magnitude : Hm(Ω) is a norm space, and the norm of a function u ∈ Hm(Ω)

being defined as the non-negative real number ‖ u ‖m given by

‖ u ‖m =
√

(u, u)m

The norm is a measure of the magnitude of the function and has the properties

that for any u, v ∈ Hm(Ω), and any real number α,

‖ u + v ‖m ≤ ‖ u ‖m + ‖ v ‖m,

‖ αu ‖m = | α | · ‖ u ‖m,

‖ u ‖m≥ 0 and ‖ u ‖m= 0 if and only if u = 0,

| (u, v)m |≤‖ u ‖m‖ v ‖m ∀u, v ∈ Hm(Ω)—Schwarz inequality.

• Distance : The distance between functions in Hm(Ω) is defined by the Hm-norm

of their difference. Thus the difference between u and v is ‖ u− v ‖m

EXERCISE 2

Question 1

Given a boundary value problem

−u′′(x) = δ(x− 1
2
) x ∈ (0, 1)
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u(0) = 0, u(1) = 0,

Construct a variational statement of the problem. (Ans : Find u ∈ H1
0 such

that
∫ 1

0
u′v′dx = v( 1

2 ) ∀v ∈ H1
0 , where H1

0 = . . ..)

Question 2

Show that one variational formulation of the boundary value problem

−xu′′ − u′ + u = sinx, x ∈ (0, 1)

u(0) = u(1) = 0

is as follows.

Find u ∈ H1
0 such that

∫ 1

0

(xu′v′ + uv − vsinx)dx = 0 ∀v ∈ H1
0 ,

where H1
0 = {v|v ∈ H1(0, 1) and v(0) = v(1) = 0}.

Question 3

Consider

−u′′ + u = x x ∈ (0, 1)

u(0) = 0, u(1) = 0

1) Find the variational statement of the boundary value problem

2) Find a Galerkin approximation using N = 3 and

φi = sin(iπx) (i = 1, 2, 3)
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a) Calculate Kij and Fi, then solve for αj

b) Construct the approximate solution uN (x)

Question 4

Develop a FE formulation for the B.V.P.

− d

dx

(
k(x)

du

dx

)
+ b(x)u(x) = f(x) x ∈ (a, b)

u(a) = 0, u(b) = 0

(Ans : Ku = F with Kij = . . . , Fi = . . .)



Chapter 3

Two-Point Boundary Value
Problems

The aim of this chapter is to enhance the understanding of the finite element method

by working through all details of the finite element approximation via a simple 2-point

boundary value problem defined by
{ − d

dx (k(x)du
dx ) + γ(x)u = f(x) x ∈ (a, b)

u(a) = A, k(b)du
dx (b) = −pb[u(b)− u∞] = σ(b).

(3.1)

3.1 Finite Element Formulation

Variational statements

The residual error function corresponding to the given differential equation is

r(x) = − d

dx
(k

du

dx
) + γu− f,

from which we obtain the overall weighted residual error

R =
∫ b

a

vr(x)dx =
∫ b

a

(ku′v′ + γuv − fv)dx− kv

[
du

dx

]b

a

.

41
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For the above integrals to be well defined, it is sufficient to choose

u ∈ H1(a, b), v ∈ H1(a, b).

In addition, as u′(a) is not given, choose v from H1
0 = {v : v ∈ H1 and v(a) = 0}. Then

the variational statement for the boundary value problem is

Find u ∈ H1 such that u(a) = A and

(ku′, v′) + (γu, v) = (f, v) + v(b)σ(b) ∀v ∈ H1
0 , (3.2)

where (u1, u2) =
∫ b

a

u1u2dx. (3.3)

Derivation of Finite Element Equations

To derive a set of finite element equations for the solution of the two-point boundary

value problem, we divide [a, b] into Nele elements with Nnode nodes. Let H1
h be the N

dimensional subspace of H1 (H1
h ⊂ H1), with basis functions {φi}N

i=1 and H1
0h ⊂ H1

0 .

Then, the finite element approximation is to

find un ∈ H1
h such that u(a) = A and

(ku′N , v′N ) + (γuN , vN ) = (f, vN ) + v(b)σ(b) ∀vN ∈ H1
0h. (3.4)

As

uN =
N∑

j=1

ujφj , vN =
N∑

i=1

viφi,

(3.4) becomes

N∑

j=1

[(kφ′i, φ
′
j) + (γφi, φj)]uj = (f, φi) + σ(b)φi(b). (3.5)

⇒ Ku = F + Fb, (3.6)
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where K = (Kij) with Kij = (kφ′i, φ
′
j) + (bφi, φj),

F = (Fi) with Fi = (f, φi) and

Fb = (Fbi) with Fbi = σ(b)φi(b).

As discussed in Chapter 2, φi are continuous functions defined piecewisely over

each Ωe. Thus, the global stiffness matrix K and the vector F can be obtained by

assembling the corresponding contributions from each element, i.e

Kij =
Nele∑
e=1

Ke
ij , Fi =

Nele∑
e=1

F e
i , (3.7)

with element quantities

Ke
ij =

∫

Ωe

(kφ̇e
i φ̇

e
j + γφe

i φ
e
j)dx, F e

i =
∫

Ωe

fφe
i dx. (3.8)

Therefore, to solve a boundary value problem using the finite element method, we need

to perform the following steps:

1) Discretise Ω;

2) Choose element shape function φe;

3) Calculate element matrix Ke and vector Fe;

4) Construct global matrix K and vector F by assembling contributions from each

element;

5) Impose boundary conditions;

6) Solve the system of equations.
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3.2 Finite Element Approximation

Consider solving

{ −uxx = 2 x ∈ (a, b)

u(a) = û1,
du
dx (b) = −pb[u(b)− u∞] = σ(b).

(3.9)

Discretization and Topology of finite element mesh

Supose that we divide [a, b] into 4 equally spaced elements. Within each element, we

choose 2 nodes (left and right ends). Then, we design a global numbering scheme for

the elements and nodes.

Once the numbering scheme has been established for a finite element mesh, we

must create the system’s topology - the element definition. This topology tells how

the elements are jointed together. On the element level, the topology is simply the

ordered numbering of the nodes. Table 4.1 illustrates the system topology that has

been established for our model. This information can be easily stored into a two

dimensional matrix with each row storing the topology of one element.

For example, the topology of element 2 can be recorded in the 2nd row of a

matrix Node(100,2): Node(2,1)=2 and Node(2,2)=3. For convenience, denote Ne
i as

the ith node of element e, i.e., Ne
i = Node(e, i).
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Table 3.1: System Topology

element Numbering scheme
Local Global

1 i j 1 2

2 i j 2 3

3 i j 3 4

4 i j 4 5

Selection of Element Shape Functions

For an arbitrarily chosen element Ωe, to approximate u(x) over Ωe by polynomial of

degree k, we need to choose (k + 1) points within Ωe. Here we approximate u(x) by

a polynomial of degree 1. So we choose two nodes i, j (left and right ends) for Ωe as

shown.

To standardize the calculation of element matrices, we firstly transform the ele-

ment Ωe into a standard element defined in [−1, 1]. This process is as follows:

Step 1. Introduce local coordinate ξ with





origin ξ = 0 at the centre of element
ξ = −1 at the left hand node
ξ = 1 at the right hand node

This can be achieved by a linear transformation

ξ =
2x− (xi + xi+1)

xi+1 − xi
, (3.10)

so that points x ∈ [xi, xi+1] are transformed to points ξ ∈ [−1, 1]. As every

element can be transformed into such element, we call this element as master ele-

ment denoted by Ω̄ and then we perform our element calculation on this reference

element.
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Step 2. For shape functions of degree k, we need to identify (k + 1) nodes (including the

end points).

Let ξi denote the ξ-coordinate of the ith node,

ue
i denote the value of u at node i

Then within Ωe, u(x) can be approximated by the Lagrange polynomial,

ue(x) =
k+1∑

i=1

φ̄iu
e
i with φ̄i =

k+1∏

j = 1
j 6= i

(ξ − ξj)
(ξi − ξj)

, (3.11)

where ue(x) is the local approximation of u(x) in Ωe,

φ̄i(x) denote the local interpolating functions of the master element.

eg. For linear interpolation (two nodes in each element)

φ̄1(ξ) = (ξ−ξ2)
(ξ1−ξ2)

= ξ−1
−1−1 = 1

2 (1− ξ)

φ̄2(ξ) = (ξ−ξ1)
(ξ2−ξ1)

= ξ+1
1+1 = 1

2 (1 + ξ)
(3.12)

Remarks: As the transformation (3.10) is linear, a polynomial of degree k in

the ξ-system will be transformed to a polynomial of the same degree k in the

x-system.

Calculation of Element Contributions

Having selected an approximate set of shape functions, we now come to a crucial step

in the analysis, i.e., the calculation of element matrices and vectors.
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Consider Ωe(xk, xl)

ke
ij =

∫ xl

xk

φ̄′iφ̄
′
j dx, fe

i =
∫ xl

xk

2φ̄i dx.

Using the following coordinate transformation

ξ =
2x− (xk + xl)

xl − xk
, dξ =

2
xl − xk

dx =
2
h

dx

we have

ke
ij =

h

2

∫ 1

−1

φ̄′iφ̄
′
j dξ, fe

i =
h

2

∫ 1

−1

2φ̄i dξ.

Note:
φ̄k = 1

2 (1− ξ), φ̄l = 1
2 (1 + ξ)

φ′k = dφ̄k

dx = dφ̄k

dξ
dξ
dx = − 1

2

(
2
h

)
= − 1

h

φ′l = dφ̄l

dx = dφ̄l

dξ
dξ
dx = + 1

2

(
2
h

)
= 1

h

Therefore, ke =
[

ke
kk ke

kl

ke
lk ke

ll

]
, fe =

[
fe

k

fe
l

]
with

ke
kk = h

2

∫ 1

−1
φ̄′kφ̄′k dξ = h

2

∫ 1

−1
1
h2 dξ = 1

h

ke
lk = ke

kl = h
2

∫ 1

−1
φ̄′kφ̄′ldξ = h

2

∫ 1

−1
( 1
−h )( 1

h ) dξ = − 1
h

ke
ll = h

2

∫ 1

−1
φ̄′lφ̄

′
l dξ = 1

h

fe
k = h

∫ 1

1
1
2 (1− ξ) dξ = h

i.e. for e = 1, 2, 3, 4

Ke = 1
h

[
1 −1
−1 1

]

F e =
[

F e
k

F e
l

]
= h

[
1
1

]
.

Thus, we can obtain all the element matrices.



48 CHAPTER 3. TWO-POINT BOUNDARY VALUE PROBLEMS

For Ω1(x1, x2),

K1 =

[
k1
11 k1

12

k1
21 k1

22

]
= Ke, F 1 =

[
F 1

1

F 1
2

]
= F e.

For Ω2(x2, x3),

K2 =

[
k2
22 k2

23

k2
32 k2

33

]
= Ke, F 2 =

[
F 2

2

F 2
3

]
= F e.

For Ω3(x3, x4),

K3 =

[
k3
33 k3

34

k3
43 k3

44

]
= Ke, F 3 =

[
F 3

3

F 3
4

]
= F e.

For Ω4(x4, x5),

K4 =

[
k4
44 k4

45

k4
54 k4

55

]
= Ke, F 4 =

[
F 4

4

F 4
5

]
= F e.

Construction of global matrices

To construct the global K and F

i) Expand each element quantity to N dimension, i.e.

For Ω1, K1 =




K1
11 K1

12 0 0 0

K1
21 K1

22 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0




, F1 =




F 1
1

F 1
2

0
0
0




For Ω2, K2 =




0 0 0 0 0
0 K2

22 K2
23 0 0

0 K2
32 K2

33 0 0
0 0 0 0 0
0 0 0 0 0




, F1 =




0
F 2

2

F 2
3

0
0



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For Ω3, K3 =




0 0 0 0 0
0 0 0 0 0
0 0 K3

33 K3
34 0

0 0 K3
43 K3

44 0
0 0 0 0 0




, F1 =




0
0

F 3
3

F 3
4

0




For Ω4, K4 =




0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 K4

44 K4
45

0 0 0 K4
54 K4

55




, F1 =




0
0
0

F 4
4

F 4
5




(ii) Add the expanded element quantities to form the global matrices.

K =
∑E

e=1 Ke =




K1
11 K1

12 0 0 0

K1
21 K1

22 + K2
22 K2

23 0 0

0 K2
32 K2

33 + K3
33 K3

34 0

0 0 K3
43 K3

44 + K4
44 K4

45

0 0 0 K4
54 K4

55




,

F =




F 1
1

F 1
2 + F 2

2

F 2
3 + F 3

3

F 3
4 + F 4

4

F 4
5




.

Remarks:

1) Consider a typical entry Kij ,

Contributions to this entry are only from those elements containing both nodes i

and j.
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2) The system matrix K has its nonzero terms clustered about its main diagonal

while locations distant from the diagonal contain zero terms. The coefficient

matrix is said to be banded as well as sparse. From point 1), the bandwidth b

depends on the maximum difference of node number in each of the elements. If

an efficient numbering scheme is used, the bandwidth can be minimized.

Boundary Conditions

Now the system of equations obtained so far is




K11 K12

K21 K22 K23

K32 K33 K34

K43 K44 K45

K54 K55







u1

u2

u3

u4

u5


 =




F1

F2

F3

F4

F5 + σ(b)φ(b)




. (3.13)

Next, we need to impose the boundary conditions on the above system.

(i) Dirichlet boundary condition (also named essential boundary condition in the

finite element method)

u(a) = u1 = û1

– As u1 is known, we move all known quantities Ki1u1 in (3.13) to the right
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hand side, thus




0 K12 0 0 0
0 K22 K23 0 0
0 K32 K33 K34 0
0 0 K43 K44 K45

0 0 0 K54 K55







u1

u2

u3

u4

u5


 =




F1 −K11û1

F2 −K21û1

F3 −K31û1

F4 −K41û1

F5 −K51û1 + σ(b)




.

– In the variational statement, the test function v(x) is required to satisfy

v(a) = 0. However, the 1st equation of the system (3.13) is obtained by

(uN , φ1) = (f, φ1)− σφ1 |ba = 0

As φ1(a) = 1 6= 0, φ1(x) is not from the class of admissible test functions,

φ1(x) 6∈ H1
oh and we should discard this equation and hence the system of

equations becomes



0 0 0 0 0
0 K22 K23 0 0
0 K32 K33 K34 0
0 0 K43 K44 K45

0 0 0 K54 K55







u1

u2

u3

u4

u5


 =




0
F2 −K21û1

F3 −K31û1

F4 −K41û1

F5 −K51û1 + σ(b)




.

– Finally, we can either delete the 1st equation to yield an 4×4 system or add

equation u1 = û1 into the system to obtain




1 0 0 0 0
0 K22 K23 0 0
0 K32 K33 K34 0
0 0 K43 K44 K45

0 0 0 K54 K55







u1

u2

u3

u4

u5


 =




û1

F2 −K21û1

F3 −K31û1

F4 −K41û1

F5 −K51û1 + σ(b)




. (3.14)

(ii) General natural boundary condition

k
du(b)
dx

= −pb(u(b)− u∞) = σ(b).
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The above natural boundary condition has been brought into the variational

statement and consequently the 5th equation of (3.14) is

K54u4 + K55u5 = F5 −K51û1 − pbu5 + pbu∞
⇒ K54u4 + (K55 + pb)u5 = F5 −K51û1 + pbu∞

Therefore system (3.14) becomes



1 0 0 0 0
0 K22 K23 0 0
0 K32 K33 K34 0
0 0 K43 K44 K45

0 0 0 K54 (K55 + pb)







u1

u2

u3

u4

u5


 =




û1

F2 −K21û1

F3 −K31û1

F4 −K41û1

F5 −K51û1 + pbu∞




.

which can then be solved to find u2, u3, u4 and u5.

Error Estimates

Suppose that the actual solution u of our boundary value problem has the property

that its derivatives of order s are square-integrable on Ω, but those of order s + 1 and

higher are not, s being an integer greater than unity. Further, suppose that we use

shape functions that contain complete polynomial of degree ≤ k and a uniform mesh

of elements of equal length h. Then the approximate error, measured in H1-norm, can

be shown to satisfy the asymptotic error estimate

‖ u− un ‖1≤ chµ (note ‖ v ‖1=
[∫ b

a

(v′2 + v2)dx

]1/2

)

where c is a constant independent of h and µ = min(k, s).

Remarks: When the solution u is regular (i.e. s > k), then an improvement in the

rate of convergence is obtained by increasing the degree k of the polynomial used in

the approximate. However, for s < k, the rate of convergence is independent of k and

no improvement is obtained by increasing k.
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EXERCISE 3

Question 1

Consider the FE mesh as shown.

(a) Describe the topology of the mesh.

(b) Write down the form of stiffness matrix for element 2

(c) Write down the form of the global stiffness matrix.

Question 2

Consider the boundary value problem defined by the differential equation

−u′′ + b0u = 10δ(x− 1), 0 < x < 2,

where b0 is a constant, and the following sets of boundary conditions:

i) u(0) = 1, u(2) = 3,

ii) u′(0) = 2, u′(2) = g0 (g0 is constant),

iii) u′(0) + u(0) = 1, u(2) = 1.

a) Using four elements of equal length and piecewise-linear basic func-

tions, compute the global stiffness matrix and load vectors for this
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general class of problems for the case is which b0 = 1 and b0 = 0. Give

numerical values of all entries.

(b) Develop the reduced(non-singular) equations for problems (i) and (iii).



Chapter 4

Elliptic Boundary Value
Problems

4.1 Introduction

The basic steps involved in solving a boundary value problem by finite element method

are as follows:

1) Formulation of a variational statement with an appropriate space of admissible

functions identified.

2) Construction of a finite element mesh and piecewise-polynomial basis functions

defined on the mesh.

3) Construction of an approximation of the variational boundary value problem on

a finite element subspace Hh. This generates a system of algebraic equations (or

ordinary differential equations).

4) Solution of a system of equations.

55
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In this chapter, we determine the finite element solution of boundary value problems

of elliptic type,

−∇ · [k(x)∇u] + b(x)u = f(x) x ∈ Ω,

u(s) = û(s) s ∈ ∂Ω1,

−k(s)∂u(s)
∂n = p(s)[u(s)− û(s)] = σ̂(s) s ∈ ∂Ω2,

(4.1)

where ∇ is the gradient operator, ∇· is the divergence operator and 4 = ∇2 is the

Laplace operator.

4.2 Variational Statement

To construct the variational statement of the boundary value problem (4.1), we define

the residual function

r(x) = −∇ · [k∇u] + bu− f.

To test the residual over an arbitrary subregion, we multiply r by a sufficiently smooth

test function v, integrate over Ω and set the resulting overall weighted residual to zero,

we thus have
∫

Ω

[−∇ · (k∇u) + bu− f ]v dΩ = 0. (4.2)

Then, as is typical in finite element work, we proceed to reduce the 2nd order terms to

the 1st order by integration by parts. Using the product rule for differentiation

∇ · (vk∇u) = k∇u · ∇v + v∇ · (k∇u)

⇒ v∇ · (k∇u) = ∇ · (vk∇u)− k∇u · ∇v,
(4.3)

we have from (4.2)

∫

Ω

[k∇u · ∇v −∇ · (vk∇u) + buv − fv]dΩ = 0. (4.4)
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From the divergence theorem

∫

Ω

∇ · (vk∇u) dΩ =
∫

∂Ω

vk∇u · n ds =
∫

∂Ω

vk
∂u

∂n
ds, (4.5)

equation (4.4) becomes

∫

Ω

[k∇u · ∇v + buv − fv] dΩ−
∫

∂Ω

k
∂u

∂n
v ds = 0. (4.6)

Choosing v(x) such that v(s) = 0 on ∂Ω1 and using the boundary condition (4.1)3, we

obtain
∫

Ω

[k∇u · ∇v + buv − fv] dΩ +
∫

∂Ω2

puv ds−
∫

∂Ω2

pûv ds = 0. (4.7)

To specify the appropriate class of admissible functions for problem (4.7), we examine

the integrals in (4.7) and observe that the area integrals are well defined whenever u

and v and their 1st order partial derivatives are smooth enough to be square-integrable

over Ω. Thus, we need to choose u and v from H1(Ω).

Hence, our variational boundary value problem can now be stated concisely in

the following form:

Find u ∈ H1(Ω) such that u = û on ∂Ω1 and

a(u, v) = L(v) ∀v ∈ H1(Ω), (4.8)

where H1
0 = {v : v ∈ H1 and v = 0 on ∂Ω1},

a(u, v) =
∫
Ω
(k∇u · ∇v + buv) dΩ +

∫
∂Ω2

puv ds is a bilinear form of u and v,

L(v) =
∫

∂Ω2
pûv ds +

∫
Ω

fv dΩ is a linear form of v.
Remarks: Natural boundary conditions enter implicitly in the variational statement,

while the essential boundary conditions enter the problem in the definition of the class

of admissible functions.
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4.3 The Galerkin Approximation

A Galerkin approximation of (4.8) is obtained by posing the variational problem on a

finite-dimensional subspace Hh of the space of admissible functions. Specifically, we

seek uh ∈ H1
h such that uh(s) = û on ∂Ω1 and

a(uh, vh) = L(vh) ∀vh ∈ H1
0h

(4.9)

Let {φi(x)}N
i=1 be the basis functions of H1

h, then

uh(x) =
N∑

j=1

αjφj(x), vh(x) =
N∑

i=1

βiφi(x). (4.10)

Substituting (4.10) into (4.9) yields

∑N
i=1 a(uh, φi)βi =

∑N
i=1 L(φi)βi ∀βi

⇒ a(uh, φi) = L(φi), (i = 1, 2, . . . , N)
(4.11)

Substituting (4.10) into (4.11) yields

∑N
i=1 a(φi, φj)αj = L(φi), (i = 1, 2, . . . , N)

⇒ Aα = F,
(4.12)

where A = (aij) is an N ×N matrix with aij = a(φi, φj),

F = (Fi) ∈ RN with Fi = L(φi) and

α = (αi) ∈ RN .

Therefore, the Galerkin approximation uh of the solution u is of the form

uh(x) =
N∑

j=1

αjφj(x), (4.13)

where α ∈ Rn is determined by (4.12) and

{φj(x)}N
j=1 are basis functions of H1

h.
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4.4 The Finite Element Interpolation

The finite element method provides a general and systematic technique for constructing

the basis functions φi.

Consider an open bounded domain Ω in RN with boundary ∂Ω. Let u ∈ Cm(Ω̄)

where Ω̄ is the closure of Ω, then the construction of a finite element interpolation of

u(φi) can be accomplished by the following steps.

1) Partitioning of Ω̄

We replace Ω̄ by a collection Ω̄h of simple domain (element) Ω̄e such that

a) Ω̄h = ∪E
e=1Ω̄e

b) Ω̄e ∩ Ω̄f = φ for distinct Ω̄e and Ω̄f ∈ Ω̄h

c) every Ω̄e is closed and consists of a non-empty interior Ωe and a boundary ∂Ωe.

2) Local Interpolation Over Ω̄e-Local Basis φe
i

Over each Ω̄e , we choose Ne nodes where the values of u and ue
i are to be used as

basic unknowns. Then we construct local interpolation function {φe
i (x)}Ne

i=1 such that

the restriction of uh to Ω̄e is

ue
h(x) =

Ne∑

i=1

ue
i φ

e
i .

The form of φe
i (x) for various type of elements will be studied in detail later.

3) Assembly of Global Basis Functions φi

Suppose there are N nodes in the finite element mesh, then there will be N global basis

functions, each corresponding to one node (dominant node).
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The global basis functions φi can be generated by patching together those local

shape functions φe
i defined over Ω̄e which contain the node i. For example, suppose

node i in the finite element mesh is shared by M elements. Then the local shape

functions for point i corresponding to each of these elements are combined to form the

global φi which satisfies

• the proper inter-element continuity

• φi(xj) = δij

• φi(x) is non-zero only over the particular patch of the M elements meeting at

node i.

Thus, we can generate N linearly independent functions {φi(x)}N
i=1 which form a basis

of an N − dimension function space.

4.4.1 Triangular Elements

(1) Linear 3-point triangular elements

Approximate u(x) over the element Ωe by

ue
h(x, y) = α1 + α2x + α3y, ∀(x, y) ∈ Ωe (4.14)

which determines a plane surface. Thus the use of linear interpolation on a triangular

element will result in the approximation of a given smooth surface v(x, y) by a plane

as shown.

By evaluating (4.14) at each node, we have


u1

u2

u3


 =




1 x1 y1

1 x2 y2

1 x3 y3




[ α1

α2

α3

]
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Figure 4.1: Approximate function ue
h(i), i = 1, 2, 3

or ue = p(xi)α

⇒ α = p−1(xi)ue

Therefore ue
h(x, y) = [1, x, y]p−1(xi)ue

which can be rearranged to yield

ue
h(x, y) = u1φ

e
1 + u2φ

e
2 + u3φ

e
3 (4.15)

with element shape functions being




φe
1(x, y) = 1

2Ae
[(x2y3 − x3y2) + (y2 − y3)x + (x3 − x2)y]

φe
2(x, y) = 1

2Ae
[(x3y1 − x1y3) + (y3 − y1)x + (x1 − x3)y]

φe
3(x, y) = 1

2Ae
[(x1y2 − x2y1) + (y1 − y2)x + (x2 − x1)y]

(4.16)

and Ae = 1
2

∣∣∣∣∣∣∣

1 x1 y1

1 x2 y2

1 x3 y3

∣∣∣∣∣∣∣
is area of an element.

Remarks: The global piecewise basis function φi(x, y) constructed using the method

described before is continuous across inter-element boundaries and, therefore, over Ωh

their 1st order partial derivatives are step functions and, hence, are square-integrable.

(2) Higher Order Triangular Element

Let us first display the terms appearing in polynomials of various degrees in two vari-

ables in the form as shown in Figure 4.2.

The above triangular array is called Pascal’s triangle.
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Figure 4.2: Pascal’s triangle

Remarks:

1) A complete polynomial of degree k in x and y has 1
2 (k + 1)(k + 2) terms. Thus,

a polynomial of degree k in x and y can be uniquely determined by specifying its

value at 1
2 (k + 1)(k + 2) points in the plane.

2) The location of entries in Pascal’s triangle can be used as the location of nodal

points in triangular elements as shown in Figure 4.2.

3) The elements using the Pascal’s triangle produce, for polynomial of degree > 0,

basis functions that are continuous over the domain and, therefore, have square

integrable 1st order partial derivatives.

Consider, for example, two adjacent six-node triangles Ωe and Ωe+1 in the mesh.

The local interpolation ve
h and ve+1

h are quadratic polynomials that must coincide at

the 3 nodal points common to each element. However, the specification of 3 values

of a quadratic in 1-D uniquely determines that quadratic. Hence, ve
h and ve+1

h will

coincide everywhere on the common boundary of the 2 elements, and vh will, therefore,

be continuous across this boundary, as shown in Fig. 4.2.
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4.4.2 Rectangular Elements

By taking the product of a set of polynomials in x with a set of polynomials in y, shape

functions for a variety of rectangular elements can be obtained.

(1) Bilinear polynomials

The product of (1, x) and (1, y) produces a matrix

[ 1
x

]
[ 1 y ] =

[ 1 y
x xy

]
. (4.17)

A bilinear local interpolant can then be obtained by forming a linear combination of

all the four terms in the matrix, i.e

ve
h(x, y) = a1 + a2x + a2y + a4xy. (4.18)

Remarks:

1) if we choose four nodes in the rectangular element, one at each corner, the function

ve
h can then be uniquely determined by specifying its values at those nodes. We

can rearrange above as

ve
h(x, y) =

4∑
1

uiφ
e
i (x, y),

where φe
i (x, y) denote the element basis functions.

2) Along the side x = constant or y = constant, ve
h is linear in x or y. Thus, if

two such elements Ωe and Ωe+1 have a common side in the mesh, then ve
h(x, y)

and ve+1
h (x, y) will coincide on the common side and therefore vh[φi(x, y)] are

continuous over Ωh. Thus, the shape functions obtained using (4.18) will produce

basis functions φi which have square-integrable 1st order derivatives over Ωh.
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(2) Higher Order Rectangular Elements

By considering tensor products of polynomials of higher degree, element shape functions

can be constructed which contain polynomials of any desired degree and which lead to

basis functions that are continuous throughout Ωh.

eg. For a biquadratic local interpolation, we firstly find the matrix from




1
x

x2


 [ 1 y y2 ] =




1 y y2

x xy xy2

x2 x2y x2y




Then the biquadratic local interpolant ve
h is obtained by forming a linear combination

of all the nine terms in the matrix. To completely determine the interpolant, construct

a rectangular element with nine nodes as shown.

Figure 4.3: A rectangular element with nine nodes

4.4.3 Interpolation Error

Let g be a smooth function given,

gn be the finite element representation which contains a complete polynomial

of degree k.

If all partial derivatives of g of order k + 1 are bounded in the domain Ωh, then the

interpolation error satisfies

‖g − gh‖∞,Ωe = max |g(x, y)− gh(x, y)| ≤ Chk+1
e

(x, y) ∈ Ωe
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where C is a positive constant and he is the diameter of Ωe ; that is, he is the largest

distance between any two points in Ωe. Similarly

∥∥∥∥
∂g

∂x
− ∂gh

∂x

∥∥∥∥
∞,Ωe

≤ C1h
k
e ,

∥∥∥∥
∂g

∂y
− ∂gh

∂y

∥∥∥∥
∞,Ωe

≤ C2h
k
e .

4.5 Finite Element Approximation

Assembly of Finite Element Equations

Return to the problem described in section 5.3, as we choose φi(xj) = δij , our finite

element approximation of u is

uh(x) =
N∑

j=1

ujφj(x).

Thus, our problem now is:

Find u ∈ RN such that ui = û on ∂Ω1 and

Au = F

for all φi such that φi = 0 on ∂Ω1 and

A = (aij) with aij = a(φi, φj) =
∫
Ω
(k∇φi · ∇φj + bφiφj) +

∫
∂Ω2

pφiφj ds

F = (Fi) with Fi = L(φi) =
∫
Ω

fφi dΩ +
∫

∂Ω2
pûφi ds.

As φi(x) are defined piecewisely over each element Ωe, we have

aij =
E∑

e=1

∫

Ωe

(k∇φi · ∇φj + bφiφj) dΩ +
E∑

e=1

∫

∂Ω2e

pφiφj ds

Fi =
E∑

e=1

{∫

Ωe

fφidΩ +
∫

∂Ω2e

pûφi ds

}
.

To assemble A, loop over all elements to calculate ae and successively add in the

contributions from each ae as follows :
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Set A(i, j) = 0, b(i) = 0, i, j = 1, 2, ...N

For e = 1, 2...E

calculate ae

Set Ag(e,a)g(e,β) = Ag(e,a)g(e,β) + ae
αβ

Fg(e,a) = Fg(e,a) + F e
α α, β = 1, 2, ..., Number of Nodes inΩe.

where g(e, k) denotes the global node number of the kth node of element e.

Boundary Condition

The boundary conditions are of two types : natural and essential conditions. The

natural boundary conditions are brought into the variational statement through the

boundary integral, which modifies the coefficient matrix A and the vector F. By con-

trast, essential boundary conditions are not enforced through the boundary integral.

There are used to define the space H of admissible functions. However, in the construc-

tion of A and F, the restriction on H due to the boundary conditions has not been

taken into account. Thus, they must be enforced by overriding the main finite element

equations at the boundary concerned.

Suppose at point `, u` = û and the assembled system is



a11 · · · a1` · · · a1N
...

...
...

a`1 · · · a`` · · · a`N
...

...
...

aN1 · · · aN` · · · aNN







u1
...

u`
...

uN


 =




f1
...
f`
...

fN




We impose the boundary condition u` = û by performing the following steps:

1) Move the known values to the right hand side



a11 · · · 0 · · · a1N
...

...
...

a`1 · · · 0 · · · a`N
...

...
...

aN1 · · · 0 · · · aNN







u1
...

u`
...

uN


 =




f1 − a1`û
...

f` − a``û
...

fN − aN`û



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2) Impose the restriction φ` = 0 on the system.

Noting that a`j = a(φ`, φj) = 0, f` = L(φ`) = 0 , we have



a11 · · · 0 · · · a1N
...

0 · · · ... · · · 0
...

aN1 0 aNN







u1
...

u`
...

uN


 =




f1 − a1`û
f2 − a2`û

...
0
...

fN − aN`û




This set of equations is rank deficient and need to be modified by one of the following

methods.

• Combine with the Dirichlet Condition u` = û` to yield



a11 · · · 0 · · · a1N
...

...

0
... 1

... 0
...

...
aN1 · · · 0 · · · aNN







u1u2
...

u`
...

uN


 =




f1 − a1`û
...
û
...

fN − aN`û




• Delete row ` and column ` to form an (N − 1)× (N − 1) system.

Example 4.1 Consider




−∆(x, y) = f(x, y) in Ω
u = 0 on Γ41

∂u
∂n = 0 on Γ12, Γ25, Γ67, andΓ74

∂u
∂n + βu = γ on Γ56

In this case ∂Ω1 = Γ41

∂Ω2 = Γ12 ∪ Γ25 ∪ Γ67 ∪ Γ74 ∪ Γ56

Our analysis of this problem proceeds as follows:

• Partition Ω into six triangular elements.
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Figure 4.4: Computation domain Ω

• Compute the element matrices ae and fe (e = 1, 2, ..., 6)

ae =




ae
11 ae

12 ae
13

ae
21 ae

22 ae
23

ae
31 ae

32 ae
33


 , fe =




fe
1

fe
2

fe
3




• Assemble the element matrices to form the global matrix using the following

topology:
ele node 1 2 3
1 1 2 3
2 1 3 4
3 2 5 3
4 3 4 7
5 3 6 7
6 3 5 6

Hence, we have




K11 K12 K13 K14 0 0 0
K21 K22 K23 0 K25 0 0
K31 K32 K33 K34 K35 K36 K37

K41 0 K43 K44 0 0 K47

0 K52 K53 0 K55 + Kb K56 0
0 0 K63 0 K65 K66 + Kb K67

0 0 K73 K74 0 K76 K77







u1

u2

u3

u4

u5

u6

u7




=




F1

F2

F3

F4

F5 + Fb

F6 + Fb

F7



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K11 = a1
11 + a2

11, K12 = a1
12

K13 = a1
13 + a2

12, K14 = a2
13

K21 = a1
21, K22 = a1

22 + a3
11

K23 = a1
23 + a3

13, K25 = a3
13

K31 = a1
31 + a2

21, K32 = a1
32 + a3

31

K33 =
a1
33 + a2

22 + a3
33

+a4
11 + a5

11 + a6
11

, K34 = a2
23 + a4

12

K35 = a3
32 + a6

12, K36 = a5
12 + a6

13

K37 = a4
13 + a5

13, K41 = a2
31

K43 = a2
32 + a4

21, K44 = a2
33 + a4

22

K47 = a4
23, K52 = a3

21

K53 = a3
23 + a6

21, K55 = a3
22 + a6

22

K63 = a5
21 + a6

31, K66 = a5
22 + a6

33

K67 = a5
23, K73 = a4

31 + a5
31

K74 = a4
32, K76 = a5

32

K77 = a4
33 + a5

33

• Impose the essential boundary condition.
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EXERCISE 4

Question 1

Consider the boundary value problem

−∆u + λu = f in Ω

u = 0 on ∂Ω.

Develop a variational statement of the problem using integration by part

(or Green’s formula).

Question 2

Consider a rectangular element with four nodes, one at each corner. In

view of our criteria for acceptable finite element basis functions, why is the

following choice of a local test function representation unacceptable ?

ve
h(x, y) = a1 + a2x + a3y + a4x

2

Here a1, a2, a3 and a4 are constants.

Question 3

Suppose that Ωh is a square consisting of eight triangular elements of equal

size. Describe by means of sketches, the global basis functions φi, i =

1, 2, ...9 generated by piecewise-linear shape functions on each element.

Question 4

Furnish additional details for the example 5.1 as follows.
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a) Suppose that all the elements in the mesh shown are equal isoscale

triangles, the two equal sides being of length h. Derive the element

stiffness matrix ae and fe for f(x, y) = 1.

b) Suppose the coordinates of the nodes in the mesh is as shown. Use the

result in a) to calculate the element stiffness matrixes and load vectors

for all six elements.

c) Construct the global matrices and load vector.

d) Impose the boundary condition to obtain the final system of equations.
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Chapter 5

Parabolic Boundary Value
Problems

In this chapter, we consider the solution of linear parabolic problems (diffusion prob-

lems) governed by the parabolic partial differential equation (5.1)1 with boundary con-

dition (5.1)2 and initial condition (5.1)3 as follows:

ut −∇.(k∇u) + bu = f in Ω× I

subj. B.C. ∂u
∂n + αu = γ on ∂Ω× I

I.C. u(x, 0) = û(x) in Ω

where I : [0, T ]

(5.1)

5.1 Semi-discretization in space

Variational statement

Multiplying (5.1), for a given t , by v ∈ H1, then integrating over Ω and using Green’s

theorem, we get

∫

Ω

utv dΩ +
∫

Ω

(k∇u · ∇v + buv) dΩ +
∫

∂Ω

kαuv ds =
∫

Ω

fv dΩ +
∫

∂Ω

kγv ds. (5.2)

Thus, we are led to the following variational problem:

73
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Find u = u(x, t) ∈ H1(Ω) such that for every t ∈ I

(ut, v) + a(u, v) = L(v) ∀ v ∈ H1(Ω) (5.3)

u(x, 0) = û(x) (5.4)

where (·, ·) = inner product

a(u, v) =
∫
Ω
(k∇u · ∇v + buv)dΩ +

∫
∂Ω

kαuv ds.

L(v) =
∫
Ω

fv dΩ +
∫

∂Ω
kγv ds.

Finite Element Approximation

Let H1
h be a finite dimensional subspace of H1 with basis functions {φ1, φ2, ...φn}.

Then, the variational problem is approximated by :

Find uh(x, t) ∈ H1
h such that uh(x, 0) = û(x) and

(∂uh

∂t
, vh

)
+ a(uh, vh) = L(vh) ∀ vh ∈ H1

h. (5.5)

In the usual way, we introduce a discretization of Ω as a union of elements Ωe, i.e.

Ω → ⋃E
e=1 Ωe and approximate u(x, t) at t by.

uh(x, t) =
n∑

j=1

uj (t)ϕj (x) (5.6)

From (5.5) and (5.6), by using the usual finite element formulation, we obtain

Mu̇ + Au = F
u(0) = û (5.7)

where M = (mij) with mij = (ϕi, ϕj) =
∑E

e=1

∫
Ωe

ϕiϕjdΩ

A = (aij) with aij = a(ϕi, ϕj) =
∑E

e=1

∫
Ωe

(k∇ϕi · ∇ϕj + bϕiϕj) dΩ +
∑∂E

e=1

∫
∂Ωe

kαϕiϕj ds

F = (fi) with fi = L(ϕi)
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Consistency and Stability

Definition: consistency

By consistency we mean that the numerical scheme converges to the cor-

rect governing equation as the mesh size and the time stepping indepen-

dently go to zero.

Definition: stability

By stability we generally mean that a scheme is stable if the error measured

in an appropriate norm does not become unbounded as time increases.

Error estimate theorem

Let u be the solution of (5.1) with k = 1, b = f = 0, u = 0 on ∂Ω and

let un be the corresponding finite element solution using (5.7). Then ∃ a

constant c such that

max
t∈I

‖ u(t)− un(t) ‖≤ c

(
1 +

∣∣∣∣log
T

h2

∣∣∣∣
)

max
t∈I

h2‖u(t)‖H2(Ω). (5.8)

Basic stability inequality (for f = 0, u = 0 on ∂Ω).

Let uh(t) satisfy (5.7), then

‖uh(t)‖ ≤ ‖uh(0)‖ ≤ ‖û‖, t ∈ I

Proof

For u = 0 on ∂Ω, (5.5) becomes (on taking vh = uh)

(u̇h, uh) + a(uh, uh) = 0
1
2

d
dt‖uh‖2 + a(uh, uh) = 0

‖uh‖2 + 2
∫ t

0
a(uh(s), uh(s))ds = ‖uh(0)‖2
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Therefore, ‖uh‖ ≤ ‖û‖

Note: we have used the notation ‖w‖ = (w, w)1/2 = (
∫

w2dΩ)2.

5.2 Time Differencing

We now consider the numerical technique to solve the following system of ordinary

differential equations.

Mu̇ + Au = F (5.9)

(i) Forward Difference Scheme

Let
du
dt

(t) =
u(t + ∆tr)− u(t)

∆t
(or

dur

dt
=

ur+1 − ur

∆tr
) (5.10)

and use forward difference with O(∆t) accuracy, then (5.9) becomes

M ur+1 = (M−∆trA)ur + ∆trFr (5.11)

where
∑n

r=1 ∆tr = T

Hence, starting with u0 at r = 0, we can generate a sequence of solutions u1,u2, ...,un

corresponding to t1, t2, ..., T.

Remarks:

1) If k, b and α depend on time, then A is a function of time, so that in the forward

difference scheme, A is replaced by A(t).

2) Finite element code for the equilibrium problem (ut = 0) in Chapter 4 can be

modified to solve this FE system at each time step.
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Program Structure

Loop over time steps r = 0, 1, 2, ...Nt

Loop over elements e = 1, 2, ...Ne

For each Ωe, calculate ae,me, fe,& be
r = (me −∆trk

e)ue
r

Assemble me to M & be
r to br

Modify M & br to satisfy essential B.C.’s

Solve Mur+1 = br

Stability

To analyze the stability of the forward difference scheme, we consider the system (5.9)

with the initial solution u(0) = û.

Suppose e(t) := error in u(t) due to a small change in û, then

M(u̇ + ė) + A(u+e)=F. (5.12)

(5.12)-(5.9) ⇒ Mė + Ae = 0

⇒ de
dt = −M−1Ae.

Thus, using forward difference scheme,

er+1 = (I−∆trM−1A)er = Rrer =
(

Πr
i=0Ri

)
e0.

If ∆tr = ∆t (constant), then

er+1 = Rr+1e0 , (r = 0, 1, ...
T

∆t
). (5.13)

Let λi, {wi}N
i=1 be eigenvalues and eigenvectors of M−1A.

Then M−1Awi = λiwi

→ ∆tM−1Awi = −∆tλiwi
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Iwi −∆tM−1Awi = (1−∆tλi)wi

(I−∆tM−1A)wi = (1−∆tλi)wi

We can approximate the error at r=0 as e0 =
∑N

i=1 αiwi.

Hence, Re0 =
∑N

1 αi(I −∆tM−1A)wi =
∑

αi(1− λi∆t)wi

R2e0 =
∑N

1 (1− λi∆t)αi(I −∆tM−1A)wi =
∑N

1 (1− λi∆t)2αwi.

Therefore,

er+1 = Rr+1e0 =
N∑
1

(1− λi∆t)r+1αiwi (5.14)

Remarks:

1) The error will not grow and the scheme is stable if

|1− λi∆t| < 1, i.e. ∆t <
2
λi

(i = 1, 2, ..., N), (5.15)

2) The larger the value of λi , the greater the restriction on the time step.

3) The value of λi is related to the finite element mesh. For example, for linear

element, from a study of the eigenvalue problem, the highest frequency for an

operator of order 2m is λm = βh−2m for a constant β. In the diffusion problem

considered, m = 1 and inequality (5.15) implies

∆t ≤ 2
β

h2 = ch2 (5.16)

(ii) Central and Backward Difference (Crank-Nicolson Method)

The forward difference extrapolation leads to the restriction on the time step size to

ensure stability. Here, we derive a scheme with unconditional stability.



5.2. TIME DIFFERENCING 79

Crank-Nicolson Scheme

Let du
dt (t + ∆t

2 ) = u(t+∆t)−u(t)
∆t

u(t + ∆t
2 ) = 1

2 (u(t) + u(t + ∆t))

Then (5.9) becomes

(M +
∆t

2
A)ur+1 = (M− ∆t

2
A)ur + ∆tFr+ 1

2
(5.17)

Remarks: The only essential difference from the forward scheme lies in the actual

form of the element matrix and vector contributions.

me +
∆t

2
ae, and (me − ∆t

2
ae)ue

r + ∆tfe
r+ 1

2
.

Stability

We consider an initial error e0 and analyze the error growth in the recursion (5.17).

Pre-multiplying (5.17) by M−1, we obtain

(I +
∆t

2
M−1A)er+1 = (I − ∆t

2
M−1A)er, (5.18)

er+1 = R−1
+ R er = (R−1

+ R )r+1e0, (5.19)

where R± = I± ∆t
2 M−1A.

Further, assume that M−1A has N linearly independent eigenvectors wi, then

e0 =
∑N

1 αi wi,

R±wi = (I ± ∆t
2 M−1A)wi = (1± ∆t

2 λi)wi,

R−1
+ wi = (1 + ∆t

2 λi)−1wi.

Therefore,

er+1 = (R−1
+ R )r R−1

+ (R e0) = (R−1
+ R )r

∑
R−1

+ (1− ∆t

2
λi)αiwi
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= (R−1
+ R )r

N∑

i=1

1− ∆t
2 λi

1 + ∆t
2 λi

αiwi =
N∑

i=1

ρr+1
i αiwi.

As the eigenvalues λi are all positive, ρi = 1−∆t
2 λi

1+∆t
2 λi

≤ 1. Consequently, the error will

not grow and the scheme is stable.

Remarks:

1) If λi < 2
∆t , then ρi > 0 and the error components decay monotonically;

if λi > 2
∆t , then ρi < 0 and the error components decay in an oscillatory manner

from one step to the next. Therefore, we can define λ∗ = 2
∆t as natural frequency.

2) The highest frequency depends inversely on the mesh size h with λn = βh−2m

for a constant β. Accordingly, if the finite element mesh is repeatedly refined,

inevitably when h2m < β ∆t
2 , some of the higher order components enter and

decaying oscillations appear. For m = 1 and linear element in our diffusion

problem in one dimension, the oscillations in components occur when ∆t
h2 > 2

β ,

which is, incidentally, the stability limit of the previous forward scheme.

(iii) Backward difference scheme

Scheme : (M + ∆tA) ur+1 = Mur + ∆tFr+1.

Using the procedure similar to that in (ii), it can be shown that the above scheme is

- O(∆t) accuracy,

- unconditionally stable,

- ρi = (1 + λi∆t)−1.
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EXERCISE 5

Question

Consider the convection-diffusion-problem

∂u
∂t − µ∆u + β1

∂u
∂x1

+ β2
∂u
∂x2

= f in Ω× I

u = 0 on ∂Ω× I

u(x, 0) = u0 on Ω

a) Find the variational statement of the problem.

b) Determine the finite element equation.
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Chapter 6

Element Calculations

This chapter focuses on a general and systematic method for calculating element ma-

trices and finite element programming.

6.1 Element Transformation

Calculation of element matrices in x, y coordinates is awkward as integration region

is complex and limit of integration changes from element to element. If we can find a

transformation

Te :
{

x = x(ξ, η)
y = y(ξ, η)

which maps an arbitrarily chosen element e into a standard (master) element Ω̄, then

the calculation of element matrices can be standardized using numerical quadrature.

(1) Master Element & Its Connection with Finite Element Mesh

The geometry of the master element is chosen as simple as possible, eg. the square as

shown.

83
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Figure 6.1: Square elements with 4 nodes (linear element), 9 nodes (quadratic element)
and 16 nodes (cubic element)

Figure 6.2: Element transformation Te

• A point P (ξ = α, η = β) in the standard element Ω̄ is mapped into a point

P [x(α, β), y(α, β)]

in local element Ωe.

• A line (ξ = α) in Ω̄ is mapped into a curve

[x = x(α, η), y = y(α, η)]

in the plane, which is called the curvilinear coordinate line (ξ = α).

• A finite element mesh can be viewed as a sequence of transformation {T1, T2, ...TE}

of the fixed master element. Each element Ωe is the image of the master element Ω̄

under a coordinate map Te.



6.1. ELEMENT TRANSFORMATION 85

• All properties of a given type of elements (number and location of nodes, shape

functions, stiffness and etc) can be prescribed for the fixed element Ω̄, and then carried

to any Ωe in the mesh by using the map Te.

(2) Properties of Coordinate Transformation

Relations between dx, dy with dξ and dη

Suppose x(ξ, η) and y(ξ, η) are continuously differentiable, then

dx =
∂x

∂ξ
dξ +

∂x

∂η
dη and dy =

∂y

∂ξ
dξ +

∂y

∂η
dη

or
[

dx

dy

]
=

[ ∂x
∂ξ

∂x
∂η

∂y
∂ξ

∂y
∂η

] [
dξ

dη

]
= J

[
dξ

dη

]
, (6.1)

where J = Jacobian matrix of the transformation.

If at point (ξ, η) we have |J | = det(J) 6= 0

then an inverse map T−1
e (x, y → ξ, η) exists at this point and thus

[
dξ

dη

]
= J−1

[
dx
xy

]
(6.2)

and

T−1
e : ξ = ξ(x, y)

η = η(x, y) (6.3)

defines a map (x, y) → (ξ, η). As in (6.1), we have

[
dξ

dη

]
=




∂ξ
∂x

∂ξ
∂y

∂η
∂x

∂η
∂y




[
dx

dy

]
. (6.4)

Hence, by equating terms in (6.4) and (6.2), we have the following relations

∂ξ

∂x
=

1
|J |

∂y

∂η
,

∂ξ

∂y
= − 1

|J |
∂x

∂η
,

∂η

∂x
= − 1

|J |
∂y

∂ξ
,

∂η

∂y
=

1
|J |

∂x

∂ξ
(6.5)
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(3) Construction of the Transformations Te

Criteria for selection of Te

(i) Within Ωe, ξ(x, y) and η(x, y) must be invertible and continuously differentiable.

(ii) {Te}E
e=1 must generate a mesh with no spurious gaps between elements and with

no element overlapping another.

(iii) Te should be easy to construct from the geometric data of the element.

Construction of Te

In finite element method, the transformation Te is constructed based on the element

shape functions.

Let ψj be the shape function defined on Ω̄ for j = 1, 2...N, where N is the total

number of nodes in Ω̄. Then, any function g = g(ξ, η) in Ω̄ can be approximated by

ḡ(ξ, η) =
∑

gjψj(ξ, η). (6.6)

Let g = x and g = y respectively, from (6.6) we have

Te :
x =

∑N
j=1 xjψj(ξ, η),

y =
∑N

j=1 yjψj(ξ, η),
(6.7)

which maps Ω̄ to Ωe. To see this, consider a node i in Ω̄, the coordinates is (ξi, ηi).

From (6.7), this point is mapped into point x = xi, y = yi in the x− y plane i.e, node

i.

Remarks:

1) Criterion (iii) is easily verified. Te is readily constructed from element data

(xi, yi, ...).
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2) Criterion (ii) is usually not difficult to satisfy.

For example, the quadratic shape function on the master square as shown in

Figure 6.3 maps the element to the corresponding elements Ωe in the x− y plane

in such a way that straight sides of the Ω̄ are mapped to quadratic curved sides of

Ωe. On a given curved side between Ωe and Ωe+1 , the maps Te and Te+1 reduce

to the same quadratic functions. Hence, the inter-element boundary is uniquely

determined – no gaps between elements.

Figure 6.3: Straight sides of Ω̄ map to curved sides of Ωe

3) For Te to be invertible, we require det(J) 6= 0. In addition, from the integration

theory,

dxdy = |J | dξdη.

Clearly, for the mapping defined by (6.3) to be acceptable, we must have positive

values of |J | at all points in Ω̄. The satisfaction of this condition is not assured

in general for all maps of the form (6.7). Each set of shape functions must be

examined to ensure that |J | > 0 throughout Ω̄.
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Example 6.1

Figure 6.4 shows a 4-node master element Ω̄ and 2 elements Ω1 and Ω2 generated from

it using the map (6.7). The shape function defined on Ω̄ are

ψi =
1
4
(1− ξξi)(1− ηηi), (i = 1, ..., 4)

where (ξi, ηi) are coordinates of node i. In this example, straight lines ξ = constant or

Figure 6.4: Mapping Ω̄ to Ω1 and Ω2

η = constant in Ω̄ map to corresponding straight lines in Ωe .

For Ω1

Te :
x = 3ψ1 + 3ψ2 = 2

3 (1− η)

y = ψ2 + ψ3 = 1
2 (1 + ξ).

|J | = det

[
0 − 3

2
1
2 0

]
=

3
4

> 0

Therefore, the map is invertible.

For Ω2

|J | = 1
8
(5− 3ξ − 4η)





= 0 along L : ξ = 5
3 − 4

3η

> 0 below L

< 0 above L.
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The region above L is mapped outside of Ω2 by T2. Clearly, Ω2 is unacceptable.

The trouble can be traced to the fact that the interior angle at node 3 is greater than

π. It can be shown that for the 4-node element Ω̄ and the bilinear shape function used,

Te will be invertible if and only if all angles of the element are less than π.

6.2 Finite Element Calculations

The key to the finite element approximation is the calculation of the element matrices

for each element in the mesh. For the approximation of the problem described in

Chapter 4, we need to calculate the following integrals

ke
ij =

∫
Ωe

[
k

(
∂φi

∂x
∂φj

∂x + ∂φi

∂y
∂φj

∂y

)
+ bφiφj

]
dxdy,

fe
i =

∫

Ωe

fφi dxdy, (6.8)

pe
i =

∫

∂Ω2e

pφiφj ds,

γe
i =

∫

∂Ω2e

Pûφi ds.

To calculate the above integrals, we begin by choosing the master element Ω̄ with

geometry as simple as possible, such as square.

For a chosen Ω, we need to

• identify M nodes and shape function ϕ to define the coordinates map Te,

• identify N nodes and shape function ϕ̄ for local approximation of the unknown

function.

Remarks: M and N need not to be the same.
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• If M > Ne, then it is super-parametric map.

• If M = Ne, then it is iso-parametric map (iso-parametric element).

• If M < Ne, then it is sub-parametric map.

In the following, we will consider only the iso-parametric element.

Having selected Ω̄ and ϕj , we perform the following steps:

(1) Element map

Te :
x =

∑N
j=1 xjϕj(ξ, η)

y =
∑N

j=1 yjϕj(ξ, η)
(6.9)

(2) Transformation of shape functions

As Te is invertible, ξ = ξ(x, y), η = η(x, y) and the element shape functions are

φj(x, y) = ϕj [ξ(x, y), η(x, y)] (6.10)

Therefore,

∂φj

∂x
=

∂ϕj

∂ξ

∂ξ

∂x
+

∂ϕj

∂η

∂η

∂x
,

∂φj

∂y
=

∂ϕj

∂ξ

∂ξ

∂y
+

∂ϕj

∂η

∂η

∂y
.

According to (6.9)

∂x

∂ξ
=

Ne∑
1

xk
∂ϕk

∂ξ
(ξ, η),

∂x

∂η
=

Ne∑
1

xk
∂ϕk

∂η
(ξ, η),

∂y

∂ξ
=

Ne∑
1

yk
∂ϕk

∂ξ
(ξ, η),

∂y

∂η
=

Ne∑
1

yk
∂ϕk

∂η
(ξ, η),

Thus, using (6.5) and (6.9), equation (6.10) becomes

∂φj

∂x
=

1
|J |

{
∂ϕj

∂ξ

N∑

k=1

yk
∂ϕk

∂η
(ξ, η)− ∂ϕj

∂η

N∑

k=1

yk
∂ϕk

∂ξ
(ξ, η)

}
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∂φj

∂y
=

1
|J |

{
∂ϕj

∂ξ

N∑

k=1

xk
∂ϕk

∂η
(ξ, η)− ∂ϕj

∂η

N∑

k=1

xk
∂ϕk

∂ξ
(ξ, η)

}

Remarks:

(a) The partial derivatives of φj w.r.t. x and y are completely determined by calcu-

lation defined only on Ω̄ .

(b) From (6.8), for 4-node element, Ke is a 4*4 matrix which can be expressed as

Ke =
∫

Ωe

(k(Dφ)T (Dφ) + bφT φ) dΩ (6.11)

where φ = (φ1, φ2, φ3, φ4) and

Dφ =

[ ∂φ1
∂x

∂φ2
∂x

∂φ3
∂x

∂φ4
∂x

∂φ1
∂y

∂φ2
∂y

∂φ3
∂y

∂φ4
∂y

]
.

(3) Integration

Let I =
∫
Ωe

g(x, y) dxdy

then I =
∫
Ω̄

G(ξ, η) dξdη,

where

G(ξ, η) = g(
N∑
1

xjϕj(ξ, η),
N∑
1

yjϕj(ξ, η))|J(ξ, η)| (6.12)

Numerical quadrature (such as the Gaussian quadrature) are usually used to evaluate

the integrals. Quadrature rules for quadrilateral elements are usually derived from the

1-D quadrature by treating the integration over Ω̄ as a double integral.

Thus, using the 1-D quadrature rule of order N,

I =
∫

Ω̄

G(ξ, η)dξdη =
∫ 1

−1

[ ∫ 1

−1

G(ξ, η)dξ

]
dη ≈

N∑

k=1

[ N∑

`=1

G(ξ`, ηk)w`

]
wk

For 9-point Gaussian quadrature ( 1-D of order 3).

N = 3, w1 = 5/9, w2 = 8/9, w3 = 5/9,
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ξ1 = η1 = −
√

3/5, ξ2 = η2 = 0, ξ3 = η3 =
√

3/5.

If k = k(x, y), b = b(x, y) and f = f(x, y) are not constant over an element, we may

use

k(x, y) ≈
N∑

j=1

kjφj(x, y), b(x, y) ≈
N∑

j=1

bjφj(x, y), f(x, y) ≈
N∑

j=1

fjφj(x, y).

Then the calculations of ae
ij and fe

i only require the nodal values of k, b and f .

(4) Boundary Integrals

The calculation of the boundary integrals in (6.8) is carried out by integrating

along those sides of Ω̄ that are mapped onto the sides of ∂Ω2e along which natural

boundary conditions are prescribed.

For definiteness, we suppose that the sides ξ = 1 of a master square is to be

mapped onto ∂Ω2h . Let θj denote the restriction of the master-element shape function

ϕj to side ξ = 1, i.e,

θj(η) = ϕj(1, η), j = 1, 2, ..., N.

We thus have
∫

∂Ω2e

pφiφj ds =
∫ 1

−1

pθi(η)θj(η)|J | dη

Since ds =

√(
∂x
∂η (1, η)

)2

+
(

∂y
∂η (1, η)

)2

dη,

we have

|J(η)| =
√(

∂x

∂η
(1, η)

)2

+
(

∂y

∂η
(1, η)

)2

where x(ξ, η) and y(ξ, η) are defined in (6.9). The integral can be evaluated numerically.
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6.3 Finite Element Program

In general, a finite element program consists of a main program and several subroutines

or functions. The main program is used to control the process while each subroutine is

used to perform certain operations.

Example 6.2 Let Ω be a square region, consider




∇ · k(x)∇T + Q = 0 on Ω
T = x on y = 0

T = 3 + x2 on y = 3
T = y on x = 0
∂T
∂x = 1− 0.2T on x = 3

Figure 6.5: Finite element mesh for Example 6.2

1) Find the variational statement of the boundary value problem.

2) Derive the finite element equations.

3) Write a program to solve the problem using the finite element method and the

mesh shown in Figure 7.5 and k=1, Q=2.

(a) Code a subroutine PREP to read data (number of elements, number of

nodes, number of boundary points and etc.) necessary for the finite element

calculations.
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(b) Code a subroutine PROC to construct the finite element equations and

solve the equations by the LU factorization method. (Use the 4-nodded

iso-parametric element as master element and evaluate integrals using the

9-point Gaussian quadrature).

(c) Code a subroutine POST to print the nodal values of T .

Requirement

• From part 3) print the element matrices (stiffness matrix and load vector) for

each element and the global matrices after each assembling of element matrices.

• From part 3) print the global coefficient matrix and load vector after imposing

the boundary conditions.

• Print the nodal values of T .

• From part 3) show the finite element solution of T (x, y) along x = y.

Sol Variational Statement is

Find T ∈ H1(Ω) such that T = x on y = 0, T = 3 + x2 on y = 3, T = y

on x = 0 and

a(T, v) = L(v), ∀v ∈ H1
0 (Ω)

.

where H1
0 (Ω) = {v : v ∈ H1(Ω) and v = 0 on x = 0, y = 0 and y = 3}

a(T, v) =
∫ 3

0
0.2T (3, y)v(3, y) dy +

∫
Ω
∇T · ∇v dΩ

L(v) =
∫ 3

0
v(3, y) dy +

∫
Ω

2v dΩ
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Finite element equations is a system

AT = F

where A = {aij}, with aij =
∑E

e=1

∫
Ωe
∇φi · ∇φj dΩ +

∑B
e=1

∫
∂Ωe

0.2φiφj dy

F = {fi} with fi =
∑E

e=1

∫
Ωe

2φi dΩ +
∑B

e=1

∫
∂Ωe

φi dy,

B is the number of elements with natural boundary condition.

Program

The following figure is the structure chart of the finite element program for the problem,

which outlines the structure of the program.
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1) Main function
Aim : Control the process

Call PREP
Call PROCESS(T)
Call POST(T)

2) Preprocessing Routine PREP

Aim : Read the data required for the construction of the finite
element equations including

(a) Control data
Nele - Number of elements (4)
Nnode - Number of nodes (9)
Nessb - Number of nodes with essential boundary condition

(T specified) (7)
Gbc - Number of elements with general boundary condition (2)
Topology of elements (elements definition)

Nnode(i,j) - Contains the global node number of the jth node
of the ith element

Input : 1 2 5 4 ← element 1
2 3 6 5 element 2
4 5 8 7 element 3
5 6 9 8 element 4

(b) Nodal point coordinate definition

X1(i),Y1(i) - the coordinates of the ith node

Input for (X1(i), i = 1, 9) = 0, 1, 3, 0, 1, 3, 0, 1, 3
(Y 1(i), i = 1, 9) = 0, 0, 0, 1, 1, 1, 3, 3, 3

Boundary condition definition

Noess (i) - node no. of the ith node with
essential boundary condition.

Tess (i) - T value at the ith node with
essential boundary condition.

nogbc(i,1),
nogbc(i,2) - The nodal number of the end points of the ith

line segment with general boundary condition.

Input for (noess(i),Tess(i),i=1,7) : 1,0,2,1,3,3,4,1,7,3,8,4,9,12



6.3. FINITE ELEMENT PROGRAM 97

( (nogbc(i,j),j=1,2),i=1,2) : 3,6,6,9

(c) Finite element calculation - Routine PROC

Aim : Solve the finite element equation AT = F
for the unknown model values T.

Call FormAF ← Construct global matrices A and F

Call ApplyBC ← Modify A and F to account for the B.Cs.

Call Lufact
Call Subst

}
Solve AT=F by the LU Method.

(d) Subroutine FormAF

Steps :

• Initialize the global stiffness matrix A and vector F

• Call Elem, element by element, to calculate the element matrices

• Call Assmb, to add element matrices to global matrices

Do 30 nel = 1, nele

Call Elem (nel,ea,ef)

Call Assmb (ea,ef,nel)

(e) Subroutine Elem (nel,ea,ef)

Calculate element matrices by Gaussian Quadrature

eaij =
∫

Ωe

∇φi.∇φjdΩ =
3∑

k=1

3∑

`=1

[
|J |(∇φi,∇φj)

]
(ξk, η`)ωkω`

efi =
∫

Ωe

2φidΩ =
3∑

k=1

3∑

`=1

[
2|J |φi

]
(ξk, η`)ωkω`
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Do 40 k = 1,3

Do 40 l = 1,3

Call shapef (......shape, dshape......)

Do 50 i = 1,4

Do 50 j = 1,4

ea(i,j) = ea(i,j) + ...

(f) Subroutine shapef (nel,......)

Aim : Calculate

φi =
1
4
(1 + ξξi)(1 + ηηi)

∂φi

∂x
=

1
|J |

(
∂φi

∂ξ

4∑

k=1

yk
∂φk

∂η
− ∂φi

∂η

4∑

k=1

yk
∂φk

∂ξ

)

∂φ

∂y
=

1
|J |

(
∂φi

∂ξ

4∑

k=1

xk
∂φk

∂η
− ∂φi

∂η

4∑

k=1

xk
∂φk

∂ξ

)

(g) Assembly Routine - Assmb (nel,ea,ef)

In the subroutine assmb, the contributions to the global A and F from

each single element are added to the accumulated contributions from other

elements.

The element matrix is 4 by 4. The list of 4 nodal point numbers, stored

in node(nel,j),j = 1,4, specifies the rows and columns of A into which the

entries of ea are to be accumulated.

Do 10 i = 1,4
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ig = node(nel,i)

Do 20 j = 1,4

jg = node (nel,j)

a(ig,jg) = a(ig,jg)+ea(i,j)

(h) Routine Applybc for applying boundary conditions.

• For node with essential boundary condition, call DRCHLT (ui,Nrow) to modify

the global matrice A and the global vector F using the method presented.

• For general boundary condition, call gbcal to calculate the integral on the bound-

ary.

EXERCISES 6

Question 1

Given the list of nodal points and their coordinates and the list of elements and their

node numbers below:

(a) sketch the finite element mesh Ωh

(b) sketch the ξ, η -axes in each element

(c) verify that the maps Te, e = 1, 2, ...5, produce a connected region Ωh

(d) sketch the global basis function φe for node 4 of the mesh.
Node x y

1 0 1
2 0.7 0.7
3 1 0
4 0 2
5 1.5 1.5
6 2 0
7 0 3
8 1.5 3
9 3 3
10 3 1.5
11 3 0

Element Nodes
1 1, 2, 5, 4
2 3, 6, 5, 2
3 5, 8, 7, 4
4 5, 10, 9, 8
5 6, 11, 10, 5
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Question 2

Code a shape function routine SHAPE for the calculation of the values of the shape

function ϕi and their derivatives ∂ϕi

∂ξ and ∂ϕi

∂η . (use 4 node element).

Code a main program to test routine SHAPE by calling it for several values

of element coordinates ξ and η and print the results for comparison with hand calcula-

tion.

Question 3

Code a 2-D integration rule routine SETINT. Use the 9-point Gaussian quadrature

rule. Code a main program to perform numerical integration over the 2-D domain Ω

given by −1 ≤ x ≤ 1,−1 ≤ y ≤ 1. Calculate

I =
∫

Ω

(3x + 2x2y2) dxdy.

Question 4

Code an element routine ELEM for the calculation of the element matrix defined in

(6.8). Use 4-node element.

Question 5

Why the following FE mesh cannot be used?



Chapter 7

Solution of Linear Systems of
Equations

In solving boundary value problems using the finite element method, at certain stage

of the solution process, one has to solve one or many equations. A system of linear

equations can be written as
a11x1 + a12x2 + ... + a1nxn = b1

a21x1 + a22x2 + ... + a2nxn = b2

...
an1x1 + an2x2 + ... + annxn = bn

(7.1)

or in matrix form Ax = b.

At present, many techniques are available for the solution of linear systems of

equations. These techniques are classified into direct methods and iterative methods.

In this chapter, we will introduce various direct and iterative methods for solving linear

systems arising from finite element formulation of boundary value problems. The rest of

the chapter is organized as follows. In section 7.1, we introduce various direct methods.

In section 7.2, we introduce the band method for sparse systems based on a direct

method. Then in section 7.3, we introduce various iterative methods.

101
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7.1 Direct Methods for Systems of Linear Equations

7.1.1 Gaussian Elimination

Solving a linear system Ax= b by Gaussian elimination includes two phases: eliminating

process and backward substitution process.

Elimination Process

The elimination process reduces the system by row operations to an equivalent simpler

system Ux = y in which U is an upper triangular matrix. This process requires (n -1)

steps.

Step 1. (Assume a11 = 0). Eliminate the 1st unknown from equations (2 - N) (i.e., set

the 1st column below the diagonal to zero). This can be achieved by subtracting

suitable multiples of the first row (equation) from the other rows (equations),

namely

Ri ← Ri −mi1R1.

The above rule is to be applied to every element of the ith row. Thus we have,

a
(2)
ij = a

(1)
ij −mi1a

(1)
1j

b
(2)
i = b

(1)
i −mi1b

(1)
1

}
(i = 1, 2, 3, ..., n)

For j = 1, we have

a
(2)
i1 = a

(1)
i1 −mi1a

(1)
11 , i = 1, 2, ..., n.

Thus to set a
(2)
i1 = 0, we only need to choose

mi1 = a
(1)
i1 /a

(1)
11 .
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During the process, the first equation is called pivotal equation and its coefficient

at the diagonal (a(1)
11 ) is called the pivot. After this step, the augmented matrix

becomes 


a
(1)
11 a

(1)
12 . . . a

(1)
1n | b

(1)
1|

0 a
(2)
22 . . . a

(2)
2n | b

(2)
2|

0
...

... | ...
|

...
...

... | ...
|

0 a
(2)
n2 . . . a

(2)
nn | b

(2)
n

|




.

Step k. After (k-1) steps of the elimination process, all the elements below the diagonal

in columns 1 to (k-1) have been set to zero. In the kth step, assume that the kth

pivot a
(k)
kk 6= 0, we deal with column k to set the elements below the diagonal in

this column to zero (i.e, eliminate the kth unknown from equations (k+1) to n).

This can be achieved by performing the following row operations for i = k + 1 to

n

Ri ← Ri −mikRk with mik = a
(k)
ik /a

(k)
kk .

Applying the above row operation rule to every column of the ith row yields

ak+1
ij = a

(k)
ij −mika

(k)
kj , bk+1

i = b
(k)
i −mikb

(k)
k , (j = k, n). (7.2)

Obviously for the elements in column k, j = k and

a
(k+1)
ik = a

(k)
ik − a

(k)
ik

a
(k)
kk

a
(k)
kk = 0,

and so the elements below the diagonal in column k will all be set to zero.
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After (n -1) steps, the system becomes




a
(1)
11 · · · · · · · · · a

(1)
in

0 a
(2)
22 · · · · · · a

(2)
2n

...
. . . . . .

...
...

. . . . . .
...

0 · · · · · · 0 a
(n)
nn







x1
...
...
...

xn




=




b
(1)
1
...
...
...

b
(n)
n




or A(n)x = b(n) or Ux = y.

In summary, we have the following recurrence formulae for the elimination process

Recurrence formulae for the Gaussian elimination process

for k = 1, 2, ..., n− 1

for i = k + 1, n

mik = a
(k)
ik /a

(k)
kk

b
(k+1)
i = b

(k)
i −mikb

(k)
k

for j = k + 1, n

a
(k+1)
ij = a

(k)
ij −mika

(k)
kj

Exercise Write a F95 program segment to implement the above elimination process.

Store the multiples mij in the lower triangle of A.

Backward Substitution

The backward substitution solves the new equivalent system Ux = y, i.e




u11 · · · u1n
. . .

...
0 ukk · · · ukn

...
. . .

...
0 · · · 0 unn







x1
...

xk
...

xn


 =




y1
...

yk
...

yn


 .
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From the nth equation, we have

unnxn = yn. (7.3)

From the kth equation, we have

ukkxk +
n∑

j=k+1

ukjxj = yk. (7.4)

Thus from 7.3 and 7.4, we have the following recurrence formulae

Recurrence formulae for the backward substitution

xn = yn

unn

xk = 1
ukk

[
yk −

∑n
j=k+1 ukjxj

]
, (k = n− 1, n− 2, ..., 1).

Exercise. Write a F95 program segment to implement the above backward substitution

process.

Operation Count

The number of operations in each step and consequently the total number of operations

required are summarized in Table 7.1. Therefore, for the elimination process

• the number of ∗/÷ :
∑n−1

i=1 i2 +
∑n−1

i=1 i = n(n−1)(2n−1)
6 + n(n−1)

2 = n3

3 − n
2 ,

• the number of +/− :
∑n−1

i=1 i2 = n3

3 − n2

2 + n
6 ;

while for the substitution process

• the number of ∗/÷ : 2
∑n−1

i=1 i + n = n2,

• the number of +/− : 2
∑n−1

i=1 i = n2 − n.
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Table 7.1: Operation Count

Elimination for U Forward subs. for y Backward subs. for x

Step

1
2
k

...
n− 1

n

± × ÷
(n− 1)2 (n− 1)2 n− 1

(n− 2)2 (n− 2)2 n− 2

(n− k)2 (n− k)2 n− k

...
...

...
1 1 1
0 0 0

× ±
n− 1 n− 1
n− 2 n− 2
n− k n− k

...
...

1 1
0 0

÷ × ±
1 0 0
1 1 1
1 k − 1 k − 1
...

...
...

1 n− 2 n− 2
1 n− 1 n− 1

Total
∑n−1

i=1 i2
∑n−1

i=1 i2
∑n−1

i=1 i
∑n−1

i=1 i
∑n−1

i=1 i n
∑n−1

i=1 i
∑n−1

i=1 i

So if n is large, the elimination process requires about n3/3 operations of ∗/÷, the

substitution process requires n2 operations of ∗/÷.

The elimination process described in this section includes computations of the

upper triangular matrix U(A(n)) and the right hand side vector y(b(n)). It will be

shown in section 7.1.2 that the determination of y is in fact through a forward substi-

tution process, namely solving Ly = b where L is a lower triangular matrix.

Example 7.1 Solve





x1 + 2x2 + x3 = 0
2x1 + 2x2 + 3x3 = 3
−x1 − 3x2 = 2

using Gaussian elimination method.

Solution

[A|b] =




1 2 1 | 0
|

2 2 3 | 3
|

−1 −3 0 | 2


 =

m21 = a21/a11 = 2/1 = 2

m31 = a31/a11 = −1/1 = −1
−−−−−−−−−−−−−−−−−−−→

R2 ← R2 − 2R1

R3 ← R3 + R2




1 2 1 | 0
|

0 −2 1 | 3
|

0 −1 1 | 2




=

m32 = a32/a22 = −1/(−2) = 1/2
−−−−−−−−−−−−−−−−−−−−→

R3 ← R3 − 1
2
R2




1 2 1 | 0
|

0 −2 1 | 3
|

0 0 1/2 | 1/2



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Thus,
x3 = 1

−2x2 + x3 = 3 ⇒ x2 = 3−x3
−2 = 3−1

−2 = −1

x1 + 2x2 + x3 = 0 ⇒ x1 = −2x2 − x3 = −2(−1)− 1 = 1.

7.1.2 LU Factorization and Its Connection with Gaussian Elim-
ination

Theorem 7.1 (Factorization Theorem)

If the Gaussian elimination procedure can be performed on the linear system Ax = b

without row interchanges, then A can be factored into the product of a lower triangular

matrix L and an upper triangular U , i.e., A = LU .

Proof (Hint). To prove A = LU , let

L =




1 0
m21 1

...
...

. . .
mn1 mn2 · · · 1




, U =




a
(1)
11 a

(1)
12 · · · a

(1)
1n

a
(2)
22 · · · a

(2)
2n

. . .
...

0 a
(n)
nn




where mij and a
(k)
ij are as defined in section 7.1.1. Then show that (LU)ij = aij .

Corollary: det A = a
(1)
11 a

(2)
22 . . . a

(n)
nn .

Proof det A = det L det U .

Since L and U are triangular, their determinants are the product of their diagonal

elements.

Exercise. Write a F95 program segment to read a matrix A and then find its LU

factorization using the Gaussian elimination.

LU Method and Its Connection with the Gaussian Elimination Method

If A = LU , then Ax = b becomes LUx = b.
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Put Ux = y, then Ly = b.

Thus, the procedure for solving Ax = b by the LU method is:

(1) Compute L and U (by the Gaussian elimination process)

(2) Solve Ly = b for y (by the forward substitution to yield y1 → y2 → · · · → yn)

(3) Solve Ux = y for x (by the backward substitution to yield xn → xn−1 → · · ·x1).

Advantages of LU Method

• More economic if we need to solve many systems with the same coefficient matrix

A but different right hand sides, as we only need to evaluate L and U for one

time. Once L and U are saved, only the forward and backward substitutions are

needed to solve each system.

• Storage space may be economized. If A is not required after factorization, we can

store L and U in A.

7.1.3 Pivoting and Scaling

Pivoting

At each step (say k) of the Gaussian elimination process, we need to use a multiplier

mik = a
(k)
ik /a

(k)
kk .

If a
(k)
kk is small in magnitude compared to a

(k)
ik , mik will have magnitude much larger

than one and thus

• when computing a
(k+1)
ij = a

(k)
ij − mika

(k)
kj (j = k + 1, n), a rounding error in-

troduced in the computation of one of the terms a
(k)
kj will be multiplied by mik

compounding the original error.
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• When performing the backward substitution for the solution xk, any rounding

error in the numerator will be amplified when dividing by a
(k)
kk .

To avoid the above problem, pivoting is performed by selecting a larger element for the

pivot.

Partial (maximum column) Pivoting

In the Gaussian elimination process at stage k, determine the smallest p > k,

such that
∣∣∣a(k)

pk

∣∣∣ = max
k≤i≤n

∣∣∣a(k)
ik

∣∣∣

and perform (Ek ↔ Ep) where Ek = the kth equation, then proceed with step k of the

elimination process. Thus, all of the multipliers mik will now satisfy |mik| ≤ 1.

Exercise. Write a F95 program segment to implement the elimination process with

maximum column pivoting.

Example 7.2 Solving

[
0.003 59.14
5.291 −6.130

] [ x1

x2

]
=

[
59.17
46.78

]
using Gaussian elimi-

nation with partial pivoting (with 4 digit arithmetic).

Solution

E1 ↔ E2 :

[
5.291 −6.130 | 46.78

|
0.003 59.14 | 59.17

]
m12 = 0.003/5.291 = 0.000567−−−−−−−−−−−−−−−−−−−−−−−→

R2 ← R2 − 0.000567R1

[
5.291 −6.130 | 46.78

|
0 59.14 | 59.14

]

Therefore,
{

x1 = 10.00
x2 = 1.00.

Check Exact solution x1 = 10, x2 = 1
Gaussian elimination without pivoting x1 = −10, x2 = 1.001.
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Complete Pivoting

At stage k, determine the smallest p, q > k, such that

∣∣∣a(k)
pq

∣∣∣ = max
k≤i,j≤n

∣∣∣a(k)
ij

∣∣∣

and perform (Ek ↔ Ep, Ck ↔ Cq), then proceed with step k of the elimination process.

Scaling and Scaled-column Pivoting

If the elements of A vary greatly in size, the pivoting strategy described above may fail.

To deal with this problem, two methods may be used.

a) Scaling matrix A so that the elements vary less, usually by multiplying the

rows and columns by suitable constants. This process will generally change the

choice of pivot elements when pivoting is used with Gaussian elimination.

b) Scaled - Column Pivoting Technique

The first step in this procedure is to define for each row a scale factor si by

si = max
i≤j≤n

|aij|

If for some i we have si = 0, then the system has no unique solution, since all

entries in the ith row are zero. If all si are not equal to zero, we continue the

Gaussian elimination process using matrix A. But we choose the pivot element

in step k by determining the smaller p > k, such that
∣∣∣a(k)

pk

∣∣∣
sp

= max
k≤i≤n

∣∣∣a(k)
ik

∣∣∣
si
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replacing the definition in partial pivoting. This process is to select the pivotal

equation from the available (n− k) candidates as the one that has the absolutely

largest coefficient of xk relative to the size of the equation.

Example 7.3 Solve

[
30.00 591400
5.291 −6.130

] [ x1

x2

]
=

[
591700
46.78

]
using using scaled col-

umn pivoting (the system is obtained by multiplying the 1st equation in example

7.2 by 104)

Solution

s1 = max(|30|, |591400|) = 591400 s2 = 6.130

|a11|
s1

= 30
591400 = 0.5073× 10−4, |a21|

s2
= 0.863

|a11|
s1

< |a21|
s2

Therefore, E1 ↔ E2

[
5.291 −6.130 | 48.78

|
30.00 591410 | 591700

]
⇒ x =

[
10
1

]
,

while the result obtained by Gaussian elimination with partial pivoting is

x =

[ −10
1

]
.

7.1.4 Permuted LU Factorization

If the matrix A is such that a linear system Ax = b can be solved using Gaussian

elimination that does not require row interchanges, then there exists a direct LU fac-

torization of A and the system can be solved by the LU method presented in 7.1.2.

In the following, we will show that if row interchanges are required to control the

rounding error resulting from the use of finite-digit arithmetic, there also exists a LU
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method, namely the permuted LU factorization method corresponding to the Gaussian

elimination with pivoting.

We begin the discussion with the introduction of a class of matrices that are used

to rearrange, or permute, rows of a given matrix.

Permutation Matrices

A permutation matrix P has the same form as the identity matrix except that the order

of the rows is different,

P =





ek1

ek2

...
ekn





(7.5)

where eki denotes the kith row of the n× n identity matrix.

For example, if k1 = 2, k2 = 3, k3 = 1, then

P =





e2

e3

e1



 =




0 1 0
0 0 1
1 0 0


 .

Property of Permutation Matrix

Left multiplying a matrix by a permutation matrix P has the effect of interchanging

(permuting) the rows of the matrix. More specifically, let k1, k2, . . . , kn be a permuta-

tion of the integers 1, 2, . . . , n, and define P as in (7.5), then

PA =




ak1,1 ak1,2 · · · ak1,n

ak2,1 ak2,2 · · · ak2,n

...
...

...
akn,1 akn,2 · · · akn,n




= {aki,j}

i.e., the ith row of the new system is the kith row of the original system.
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Example 7.4 Let P =





e1

e2

e3



 =




1 0 0
0 0 3
0 1 0


 , A =




a11 a12 a13

a21 a22 a23

a31 a32 a33


 . Then

PA =




a11 a12 a13

a31 a32 a33

a21 a22 a23


 . That is, left multiplying A by P has the effect of

interchange row 2 and row 3.

Maximum Column Pivoting & Permuted LU Factorization

Application of the elimination phase of the Gaussian elimination with maximum column

pivoting is equivalent to the LU factorization of a permuted version of the coefficient

matrix. Thus the Gaussian elimination with maximum column pivoting algorithm can

be used to find the permuted LU factorization.

Given Ax = b, by pre-multiplying P , we have

PAx = Pb.

Let PA = LU , then

LUx = Pb ⇒
{

Ly = Pb,

Ux = y.

Suppose after row interchanges, the order of equations to be processed is k1, k2, · · · , kn

where ki denotes the kith equation of the original system, then

P =





ek1

ek2

...
ekn





and Pb =





bk1

bk2

...
bkn





.

Thus to determine Pb in solving Ly = Pb, we only need to create an array (permuta-



114 CHAPTER 7. SOLUTION OF LINEAR SYSTEMS OF EQUATIONS

tion vector) p(1 : n) to store the values k1, k2, . . . , kn and hence

Pb =





bk1

bk2

...
bkn





=





b(p(1))

b(p(2))
...

b(p(n))





.

Program Construction

1) Obtain the permuted LU matrices by the Gaussian elimination with maximum

column pivoting. A permutation vector p is also produced to indicate the order

in which the original equations are to be processed.

2) Forward substitution Ly = Pb ⇒ yi = b[p(i)]−∑i−1
j=1 lijyj

3) Backward substitution Ux = y ⇒ xi = 1
uii

(
yj −

∑n
j=i+1 uijyj

)
.

7.1.5 LLT and LDLT Factorization Methods

For strictly diagonally dominant and positive definite matrices, Gaussian elimination

can be performed without row interchanges.

Strictly Diagonally Dominant Matrix (S.D.D)

Definition: A is (strictly) diagonally dominant iff |aii| ≥
∑

j 6=i |aij | for all i.

Theorem 7.2: If A is a strictly diagonally dominant matrix, then A is nonsingular.

Theorem 7.3: If A is diagonally dominant and nonsingular, then Gaussian elimination

can be performed on any linear system Ax = b to obtain its unique solution without

row or column interchanges.
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Positive Definite Matrices

Definition: A symmetric n × n matrix A is positive definite iff xtAx > 0 for every

n−D column vector x 6= 0.

Properties: If A is an n× n positive definite matrix, then

(a) A is nonsingular

(b) aii > 0 for all i

(c) A is symmetric, A = At

Theorem 7.4: The n × n symmetric matrix A is positive definite iff Gaussian elimi-

nation without row interchanges can be performed on the linear system Ax = b with

all pivot elements positive. Moreover, the computations are stable with respect to the

growth of rounding error.

(a) The Cholesky (LLT ) Factorization and Solution of Ax = b

If A is symmetric,

A = LU = At = U tLt ⇒ L = U t, U = Lt, lii = uii.

Thus, If A is positive definite, A can be factorized in the form of LLt where L is

a lower triangular matrix with nonzero diagonal entries.

LLt factorization

From A = LLt for i = 1, 2, . . . , n and j ≤ i, by multiplying the ith row of L and

jth column of Lt, we have

aij =
j∑

k=1

likljk =
j−1∑

k=1

likljk + lij ljj . (7.6)
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From the above, for i = j = 1, we have

l11 =
√

a11.

Now suppose row 1, row 2,. . ., row i−1 of L have been determined, we can derive,

from (7.6), the following recurrence formulae to determine the ith row of L.

lij =
1
ljj

[
aij −

j−1∑

k=1

likljk

]
, for j = 1 to i− 1,

l2ii = aii −
i−1∑

k=1

l2ik.

Solving Ax = b

As A = LLt, Ax = b → LLtx = b →
{

Ly = b
Ltx = y

To solve Ly = b, multiplying the ith row of L with y yields

(li1, li2, . . . , li,i−1, lii, 0, . . . , 0)




y1

y2

...
yi

...
yn




= bi.

Therefore, yi = 1
lii

[
bi −

∑i−1
j=1 lijyj

]
(i = 1, 2, . . . , n)

Remark: From the above, we can determine y1, then y2, . . . , yn.

To solve Ltx = y, multiplying the ith row of Lt with x yields

(0, . . . , 0, lii, l(i+1)i, . . . , lni)




x1

x2

...
xi

...
xn




= yi.
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Therefore, xi = 1
lii

[
yi −

∑n
j=i+1 ljixj

]
(i = n, n− 1, . . . , 1).

Remark: From the above, we can determine xn , then xn−1, . . . , x1.

Algorithm (exercises)

Operation Count

Number of ∗/÷ operations: n3

6 + n2

2 − 2
3n;

Number of +/− operations: n3

6 − n
6 ;

Number of √ operations: n.

(b) LDLt Decomposition and Solution of Ax = b

• The square roots in the LLt decomposition can be avoided by using a slight

modification, i.e., find a diagonal matrix D and a new lower triangular matrix

L with one’s on the diagonal such that A = LDLt.

• This method applies for not only the positive definite matrices but also

certain symmetric matrices.

LDLt decomposition

From A = LDLt, for i = 1, 2, . . . , n and j ≤ i,

aij =
j∑

k=1

likdkljk =
j−1∑

k=1

likdkljk + dj lij ljj ,

thus we have for

i = 1, j = 1, → d1 = a11

i = 2, 3, . . . , n

{
j = 1, 2, . . . , i− 1
j = i

→ lij = 1
dj

[
aij −

∑j−1
k=1 likdkljk

]

→ di =
[
aii −

∑i−1
k=1 dkl2il

]
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Solving Ax = b

As A = LDLt, Ax = b → LDLtx = b →
{

Ly = b

Ltx = D−1y

Hence, we can derive

yi = bi −
i−1∑

j=1

lijyj (i = 1, 2, . . . , n)

xi =
yi

di
−

n∑

j=i+1

ljixj (i = n, n− 1, . . . , 1)

Algorithm (exercise)

Operation Count

Number of ∗/÷ operations: n3

6 + n2 − 7
6n ; number of +/− operations: n3

6 − n
6 .

7.2 Solution of Sparse Systems of Linear Equations

In finite element method, the linear systems that arise usually have the property that

the nonzero entries of A are often clustered in a small number of diagonals surrounding

the main diagonal. Thus, we can use special techniques to

• Improve computation efficiency by avoiding operating involving zero operands;

• Reduce storage requirement.

This section concerns with a unique solution of the finite element linear system

Ax = b, (7.7)

where the n × n matrix A is large, sparse, and symmetric, b and x are both n × m

(m ≥ 1) matrices.

Let mA be the smallest integer such that aij = 0 for |i− j| > mA, then
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- the portion of A containing exactly those entries aij satisfying |i − j| ≤ mA is

called the band of A,

- mA is called the bandwidth by storing mainly the nonzero entries.

In the LDLT method, none of the entries of the matrix A can ever be nonzero unless

|i − j| ≤ mA. This fact can be used to modify the algorithm, so that only the entries

of the band are ever used.

Algorithm

LDLT : d1 = a11

For i = 2, ..., n

`ij = 1
dj

[aij −
j − 1∑

k = max(i−mA, j −mA)
`ik`jkdk], j = 1, 2, ..., i− 1

di = aii −
j − 1∑

k = i−mA

`2ikdk

Subst: yi = bi −
i− 1∑

k = i−mA

`ikyk, i = 1, ..., N

yi = yi

di
−

min(i + mA, n)∑
k = i + 1

`kixk, i = n, n− 1, ..., 1.

Remarks:

Let mi be the smallest integer such that aij = 0 (j < i) if i − j > m (or

j < i−m). It can be shown that, the algorithm for such problem is similar to the one

above. Except for the backward substitution formula, we can replace i±mA by i±mi

and j ±mA by j ±mj .

Storage Structure

Rules:

a) Store the matrix An×n row by row into a one-dimensional array A1.
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b) For each row, store the elements from the 1st nonzero entry to the diagonal

element.

• Use IA(i)i=1 to N to identify the storage location of A(i, i) in the 1-D array A1.

Thus,

- The elements in ith row (from the 1st nonzero element to the diagonal ele-

ment) are stored into A1[IA(i− 1) + 1], A1[IA(i− 1) + 2], ..., A1[IA(i)]

- The number of nonzero elements (from the 1st nonzero elements to the

diagonal but not include the diagonal element)

mi = IA(i)− IA(i− 1)− 1

- The element A(i, j) is stored into A1(ij) where

ij = IA(i)− (i− j).

Example 7.5 For A =




a11 a12 0 0
a21 a22 a23 a24

0 a32 a33 0
0 a42 0 a44


 (assume symmetric)

We will construct A1 and IA as follows.

k 1 2 3 4 5 6 7 8

A1(k) a11 a21 a22 a32 a33 a42 0 a44

i 1 2 3 4

IA(i) 1 3 5 8
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Programming using 1-D Storage Structure

Subroutine LDLT1(N,IA,A)

A: an array, contain matrix A(1-D). On exit, contain LD in 1-D form.

For i = 2, N

mi = IA(i)− IA(i− 1)− 1

i1 = max(i−mi, 1)

For j = i1, i

mj = IA(j)− IA(j − 1)

J1 = max(j −mj , 1)

sum = 0

For k = max(i1, j1), j − 1

ik = Trans(i, k)

jk = Trans(j, k)

kk = Trans(k, k)

sum = sum + A(ik) ∗A(jk) ∗A(kk)

ij = Trans(i, j)

jj = Trans(j, j)

If (i 6= j) then

A(ij) = (A(ij)− sum)/A(jj)

else

A(ij) = a(ij)− sum

END
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7.3 Iterative Methods for Systems of Linear Equa-
tions

For large systems with a high percentage of zero entries, iterative techniques are usually

more efficient in terms of both computer storage and computation time than direct

methods.

Solving an n × n linear system by iterative techniques includes the following general

steps

• Convert Ax = b to Nx = Tx + c

• Select an initial vector x(0) approximating x

• Generate a sequence of vectors x(k) that converges to x by

Nx(k) = Tx(k−1) + c, k = 1, 2, . . .

Jacobi and Gauss-Seidel iterative methods are two basic iterative techniques which

convert Ax = b to Nx = Tx + c using different ways.

In this section, we first introduce the Jacobi method and Gauss-Seidel method

respectively in section 7.3.1 and 7.3.2. Then we present the general convergence condi-

tion for iterative methods and particularly the sufficient conditions for convergence of

the Jacobi and Gauss-Seidel methods in section 7.3.3 , followed by the topics of error

estimate and speed of convergence in section 7.3.4. Finally, the relaxation methods

are presented in section 7.3.5 in the notion of improving the Gauss-Seidel method by

introducing a scaling (relaxation) factor.
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7.3.1 The Jacobi Iterative Method

In this method, the system

Ax = b (7.8)

is converted to Nx = Tx + c by splitting A into its diagonal and off-diagonal parts

A =




a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

. . .
...

an1 an2 . . . ann


 = D − L− U, (7.9)

where

D =




a11 0 . . . 0
0 a22 . . . 0
...

...
. . .

...
0 0 . . . ann




L =




0 0 . . . 0
−a21 0 0 0

...
. . . . . .

...
−an1 . . . −an(n−1) 0




U =




0 −a12 . . . −a1n

0 0
. . .

...
...

...
. . . −a(n−1)n

0 0 . . . 0




Thus, equation (7.8) becomes

D − L− U)x = b

which gives

Dx− (L + U)x = b
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and so

x = D−1(L + U)x + D−1b (7.10)

Hence, we can establish the following iterative formula

x(k) = Tjx(k−1) + c (7.11)

where Tj = D−1(L + U) and c = D−1b. Alternatively, (7.11) can be expressed as

x(k)
i =

1
aii


−

i−1∑

j=1

aijx
(k−1)
j −

n∑

j=i+1

aijx
(k−1)
j + bi


 , i = 1, 2, . . . , n. (7.12)

The criterion to stop generating new term is

‖x(k) − x(k−1)‖
‖x(k)‖ < Tol.

Jacobi Iterative Algorithm for Solving Ax = b

To solve Ax = b, given an initial approximation x(0).

Input: Number of equations N ; matrix A, vector b, initial guess x0, tolerance Tol,

maximum number of iterations Niter

Output: The solution x or a message that the number of iterations was exceeded.

Step 1: k ← 1

Step 2: while (k ≤ Niter do steps 3-5

Step 3: for i = 1 to N do

xi ← 1
aii


−

n∑

j=1,j 6=i

aijx0j + bi






7.3. ITERATIVE METHODS FOR SYSTEMS OF LINEAR EQUATIONS 125

Step 4: if ‖x− x0‖ < Tol then

Output x

STOP

Step 5: else

x0 ← x

k ← k + 1

then go to step 3

Step 6: Output ”Number of iterations was exceeded”

STOP.

Example 7.6 Find the solution to the system



9 −1 −1
−1 8 0
−1 0 9


x =




7
7
8


 .

Solution

x(k) =




0 1/9 1/9

1/8 0 0

1/9 0 0


x(k−1) +




7/8

7/8

8/9


 .

Select x(0) = 0. The numerical results for k = 1, 2, 3, 4, 5, obtained by using the Jacobi

method, are given in Table 7.1.

7.3.2 The Gauss-Seidel Iteration Method

A possible improvement to Jacobi’s scheme is suggested by an analysis of equation

(7.12). To compute x(k)
i , the components of x(k−1)

i are used in Jacobi’s method. Since,

for i ≥ 1, xk
1 , xk

2 , . . . , xk
i−1 have already been computed and are likely to be better
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Table 7.2: Numerical Solutions by Jacobi and Gauss-Seidel Methods

k 0 1 2 3 4 5

0 0.7798 0.9738 0.9942 0.9993 0.9998

xk 0 0.8750 0.9722 0.9967 0.9993 0.9999
by Jacobi 0 0.8889 0.9971 0.9971 0.9993 0.9999

0 0.7778 0.9942 0.9998 1.000

xk 0 0.9722 0.9993 1.0000 1.000
by Gauss-Seidel 0 0.9753 0.9993 1.0000 1.000

approximation to the actual solution of x1, x2, . . . , xi−1 than x
(k−1)
1 , x

(k−1)
2 , . . . , x

(k−1)
i−1 ,

it is reasonable to compute x(k)
i using these most recently calculated data.

The Gauss-Seidel iteration scheme is based on this consideration and takes the following

form

x(k)
i =

1
aii


−

i−1∑

j=1

aijx
(k)
j −

n∑

j=i+1

aijx
(k−1)
j + bi


 . (7.13)

We can also derive this formula and its matrix form directly from the original equation

(7.8). Using (7.9), equation (7.8) can be written as

(D − L)x = Ux + b. (7.14)

Then the Gauss-Seidel iteration scheme is

(D − L)xk = Ux(k−1) + b, (7.15)

which gives

Dxk = Lxk + Ux(k−1) + b (7.16)

or

xk = (D − L)−1Ux(k−1) + (D − L)−1b. (7.17)
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Formulae (7.16) is precisely formulae (7.13).

Gauss-Seidel Algorithm for solving Ax = b

Input: Number of equations N ; matrix A, vector b, initial guess x0, tolerance Tol,

maximum number of iterations Niter

Step 1: k ← 1

Step 2: while (k ≤ Niter do steps 3-5

Step 3: for i = 1 to N do

xi ← 1
aii


−

i−1∑

j=1

aijxj +
n∑

j=i+1

aijx0j + bi




Step 4: if ‖x− x0‖ < Tol then

Output xi

STOP

Step 5: else

k ← k + 1

x0 ← x

go to step 3

Step 6: Output ”Number of iterations was exceeded”

STOP.

Example 7.7 Find the solution to the following system:



9 −1 −1
−1 8 0
−1 0 9


x =




7
7
8



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Solution

Select x1 = x2 = x3 = 0 and use the following iterative formula to calculate the

value of xi for each cycle
x1 ← 1

9 (7 + x2 + x3)

x2 ← 1
8 (7 + x1)

x3 ← 1
9 (8 + x1)

.

The computed results are shown in Table 7.1.

7.3.3 Convergence Conditions

General Convergence Conditions

An iterative technique to solve the n × n linear system Ax = b starts with an initial

approximation x(0) to the solution x, and then generates a sequence of vectors

x(k) = Tx(k−1) + c, k = 1, 2, . . .

that converges to x.

Questions:

1) Does x(k) converge to the solution x = Tx + c for any case?

2) If not, what is the restriction to x(0) , T or c?

Theorem 7.5 For any x(0) ∈ Rn, the sequence
{
x(k)

}∞
k=0

defined by

x(k) = Tx(k−1) + c (k ≥ 1 and c 6= 0) (7.18)

converges to the unique solution of x = Tx + c iff ρ(T ) < 1.

Proof

(i) First, prove that ρ(T ) < 1 ⇒ the sequence x(k) generated by (7.18) converges to
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the unique solution.

From (7.18)

x(k) = Tx(k−1) + c
= T (Tx(k−2) + c) + c
= T 2x(k−2) + (T + I)c
...
= T kx(0) + (T k−1 + · · ·+ T + I)c.

As ρ(T ) < 1, we have

lim
k→∞

T kx(0).

From the Neumann Lemma

lim
k→∞

k−1∑

j=0

T j = (I − T )−1.

Hence,

lim
k→∞

x(k) = lim
k→∞

T kx(0) + lim
k→∞




k−1∑

j=0

T j


 c

= 0 + (I − T )−1c.

Thus, x = limk→∞ xk = (I − T )−1c is the unique solution to x = Tx + c.

(ii) Now prove that ρ(T ) < 1 ⇐ x(k) converges to the unique solution x.

If x(k) → x for any x(0), then from (7.18) x = Tx + c.

So for each k

x− x(k) = Tx + c− (Tx(k−1) + c) = T (x− x(k−1)) = · · · = T k(x− x(0))

Hence, limk→∞ T k
(
x− x(0)

)
= limk→∞

(
x− x(k)

)
= 0.

As x(0) is arbitrary, x− x(0) is also arbitrary. Thus, ρ(T ) < 1.
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Strictly Diagonally Dominant Matrices

Definition: The n× n matrix A is said to be strictly diagonally dominant when

|aij | >
n∑

j = 1
j 6= i

|aij |

holds for each i = 1, 2, . . . , n.

For example, A =




7 2 0
3 5 −1
0 5 −6


 is strictly diagonally dominant, but

B =




6 4 −3
4 −2 0
−3 0 1


 is not.

Theorem 7.6 A strictly diagonally dominant n× n matrix A is nonsingular.

Proof Assume that D, L and U are as defined by (7.9), then A = D−L−U . As A is

strictly diagonally dominant, Dii 6= 0 and thus D is nonsingular. So we can

construct

B1 = D−1(L + U),

and

‖B1‖∞ = ‖D−1(L + U)‖∞ = max
i




i−1∑

j=1

∣∣∣∣
aij

aii

∣∣∣∣ +
n∑

j=i+1

∣∣∣∣
aij

aii

∣∣∣∣


 < 1.

Hence,

|λ| ≤ ρ(B1) < ‖B1‖∞ < 1.

For any eigenvalue λ of B1, 1−λ is an eigenvalue of I−B1 = [I−D−1(L+

U)]. Since λ < 1, it follows that no eigenvalue of I − B1 can be zero and

consequently I −B1 is nonsingular.
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Therefore, A is a product of two nonsingular matrices D and (I −B1).

A = D(I −B1) = D − L− U.

Hence, det A = det D det(I −B1) 6= 0 and thus A is nonsingular.

Sufficiency Conditions for Convergence of the Jacobi & Gauss-Seidel Meth-
ods

By analyzing the iteration matrices for the Jacobi method, Tj given in equation (7.11)

and the Gauss-Seidel method, Tg given in equation (7.17), i.e.

Tj = D−1(L + U), Tg = (DL)−1U,

we can derive the following sufficiency condition for convergence of the Jacobi and

Gauss-Seidel methods.

Theorem 7.7 If A is strictly diagonally dominant, then for any choice of x(0), both

the Jacobi and Gauss-Seidel methods give sequences
{
x(k)

}∞
k=0

that converge to

the unique solution of Ax = b.

Proof

(1) For Jacobi method - Exercise

(2) For Gauss-Seidel method

‖Tg‖∞ = max
‖x‖∞=1

‖y‖∞

where

y = Tgx = (D − L)−1Ux
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from which

y = D−1Ly + D−1Ux.

Assume

yk = max
i

(yi),

‖y‖∞ = |yk| ≤
k−1∑

j=1

∣∣∣∣
akj

akk

∣∣∣∣ ‖y‖∞ +
n∑

j=k+1

∣∣∣∣
akj

akk

∣∣∣∣ ‖x‖∞

= rk‖y‖∞ + sk‖x‖∞,

where rk =
∑k−1

j=1

∣∣∣ akj

akk

∣∣∣ , sk =
∑n

j=k+1

∣∣∣ akj

akk

∣∣∣.

Thus, we have form the above formulae

‖y‖∞ ≤ sk

1− rk
‖x‖∞,

and consequently

‖Tg‖∞ ≤ sk

1− rk
.

As 1 − (sk + rk) > 0 for strictly diagonally dominant systems, we have

1− rk > sk and hence

‖Tg‖∞ ≤ 1

then

ρ(Tg) < 1.

This, from Theorem 7.5, guarantees that the sequence converges to the

unique solution.
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7.3.4 Error Bound and Speed of Convergence

We now have the following essential issues:

(i) How to estimate the error?

(ii) How many iterations are needed for a given accuracy requirement?

(iii) When are iterative methods preferable to Gaussian elimination methods in solving

Ax = b?

An error bound can be derived from theorem 7.5 and is summarized by the following

corollary.

Corollary If ‖T‖ < 1 for any natural matrix norm, then the sequences
{
x(k)

}∞
k=0

in

(7.18) converges, for any x(0) ∈ Rn, to a vector x ∈ Rn, and the following Error

bounds hold
∥∥∥x− x(k)

∥∥∥ ≤ ‖T‖k
∥∥∥x(0) − x

∥∥∥
∥∥∥x− x(k)

∥∥∥ ≤ ‖T‖k

1− ‖T‖
∥∥∥x(1) − x(0)

∥∥∥ .

Remark 1. Since the above formulae hold for any natural matrix norm, it follows that

∥∥∥x(k) − x
∥∥∥ ≈ ρk(T )

∥∥∥x(0) − x
∥∥∥ .

Thus, the rate of convergence is essentially ρ(T ).

Proof

(a) First prove that ‖T‖ < 1 ⇒ ∥∥x− x(k)
∥∥ ≤ ‖T‖k

∥∥x(0) − x
∥∥ .



134 CHAPTER 7. SOLUTION OF LINEAR SYSTEMS OF EQUATIONS

From the iterative formulae (7.18)

x(k) = Tx(k−1) + c,

we have

x− x(k) = x− Tx(k−1) − c. (7.19)

As x is the exact solution, we have

x = Tx + c,

and thus (7.19) becomes

x− x(k) = T
(
x− x(k−1)

)

= T
[
T

(
x− x(k−2)

)]

= T 2
[
x− x(k−2)

]

= T (k)
[
x− x(0)

]
.

Hence,
∥∥x− x(k)

∥∥ =
∥∥T (k)[x− x(0)]

∥∥ ≤ ‖T‖(k)
∥∥x− x(0)

∥∥.

(b) Now prove that ‖T‖ < 1 ⇒ ∥∥x− x(k)
∥∥ ≤ ‖T‖k

1−‖T‖
∥∥x(1) − x(0)

∥∥.

As x(k) = Tx(k−1) + c, we have

x(n+1)−x(n) = T
(
x(n) − x(n−1)

)
= T 2

(
x(n−1) − x(n−2)

)
= · · · = Tn

(
x(1) − x(0)

)
.

Thus for n > k ≥ 1,

x(n) − x(k) =
(
x(n) − x(n−1)

)
+

(
x(n−1) − x(n−2)

)
+ · · ·+ (

x(k+1) − x(k)
)

= Tn−1
[
x(1) − x(0)

]
+ Tn−2

[
x(1) − x(0)

]
+ · · ·+ T k

[
x(1) − x(0)

]

=
(
I + T + T 2 + · · ·+ Tn−k−1

)
T k

[
x(1) − x(0)

]
(7.20)
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From which and the Neumann lemma, we have

lim
n→∞

[
x(n) − x(k)

]
=


 lim

n→∞

n−k−1∑

j=0

T j


 T k

[
x(1) − x(0)

]
= (I−T )−1T k

[
x(1) − x(0)

]

(7.21)

Hence

(I − T )
(
x− x(k)

)
= T k

(
x(1) − x(0)

)
(7.22)

or
(
x− x(k)

)
= T

(
x− x(k)

)
+ T k

(
x(1) − x(0)

)
(7.23)

Thus
∥∥x− x(k)

∥∥ ≤ ∥∥T
(
x− x(k)

)
+ T k

(
x(1) − x(0)

)∥∥
≤

∥∥T
(
x− x(k)

)∥∥ +
∥∥T k

(
x(1) − x(0)

)∥∥
≤ ‖T‖

∥∥x− x(k)
∥∥ + ‖T‖k

∥∥x(1) − x(0)
∥∥

(7.24)

Therefore,
∥∥x− x(k)

∥∥ ≤ ‖T‖k‖x(1)−x(0)‖
1−‖T‖ .

Remark 2. If the initial error is to be reduced to its ε multiple, then

∥∥∥x− x(k)
∥∥∥ ≤ ε

∥∥∥x− x(0)
∥∥∥ ,

and thus we require from the corollary

(ρ(T ))k ≤ ε

from which the iteration number needed can be determined by

k ≥ +ln ε

+ln ρ
(ln ρ < 0).

Example 7.8 Solve a dense linear system by iteration with accuracy up to about six

digits.
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Solution

Assume that x(0) = 0, then we require
∥∥x− x(k)

∥∥
∞

‖x‖∞ ≤ ε = 10−6.

If A has order n, the number of operations (multiplications) per iteration is

n2 . To obtain the required accuracy, the necessary number of iterations is

k∗ =
+ln(10−6)

lnρ
=

6 ln 10
−ln ρ

and the number of operations is

k∗n2 = 6 ln 10
n2

−lnρ .

If Gaussian elimination is used to solve Ax = b, the number of operations

is about n3

3 . Therefore, the iterative method will be more efficient than the

Gasuuian elimination method if

k∗n2 <
n3

3
, that is k∗ <

n

3
.

Table 7.2 shows the k∗ value corresponding to different ρ values. Obviously,

if n is large and ρ is small, the iterative method is more efficient.

7.3.5 Relaxation Method

Relaxation method is an alternative form of Gauss-Seidel iterative formulae. Firstly,

we examine the Gauss-Seidel iterative formulae

x
(k)
i =

1
aii


−

i−1∑

j=1

aijx
(k)
j −

n∑

j=i+1

aijx
(k−1)
j + bi


 (7.25)
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Table 7.3: The k∗ value corresponding to different ρ

ρ k∗

0.9 131
0.8 62
0.6 27
0.4 15
0.2 9

and develop an alternative form of the formulae.

Denote r
(k)
i =

(
r
(k)
1i , r

(k)
2i , . . . , r

(k)
ni

)

as the residual error corresponding to the approximate solution at the end of the (i−1)th

step of the kth iteration cycle

x
(k)
i =

(
x

(k)
1 , x

(k)
2 , . . . , x

(k)
i−1, x

(k−1)
i , . . . , x(k−1)

n

)T

.

Then, the mth component of is

r
(k)
mi = bm −

i−1∑

j=1

amjx
(k)
j −

n∑

j=i+1

amjx
(k−1)
j − amix

(k−1)
j . (7.26)

For m=i, (7.26) becomes

r
(k)
ii = bi −

i−1∑

j=1

aijx
(k)
j −

n∑

j=i+1

aijx
(k−1)
j − aiix

(k−1)
i ,

from which we have

x
(k−1)
i +

r
(k)
ii

aii
=

1
aii


bi −

i−1∑

j=1

aijx
(k)
j −

n∑

j=i+1

aijx
(k−1)
j


 .

It is noted that the right hand side of the above formula gives of the Gauss-Seidel

method as shown by (7.25). Hence, we can determine x
(k)
i by

x
(k)
i = x

(k−1)
i +

r
(k)
ii

aii
, (7.27)

which is an alternative formula for calculating the ith component of x in iteration k.
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Characteristics of Gauss-Seidel Method

From (7.25) and (7.26) the component of residual vector for the ith equation r
(k)
i(i+1)

after the calculation of x
(k)
i and x

(k−1)
i becomes

r
(k)
i(i+1) = bi −

∑i
j=1 aijx

(k)
j −∑n

j=i+1 aijx
(k−1)
j

=
[
bi −

∑i−1
j=1 aijx

(k)
j −∑n

j=i+1 aijx
(k−1)
j

]
− aijx

(k)
i = 0

which indicates that the characteristics of Gauss-Seidel method is that at each step of

calculation, one component of the residual vector is reduced to zero.

Relaxation Method

In general, the basis of all relaxation methods is to calculate the residual vector r =

b−Ax, and to modify (or relax) one or more components of the approximate solution

x in order to reduce to zero one or more components of r. The Gauss-Seidel method is

an example of relaxation methods.

Successive Over Relaxation (SOR) Method and Under Relaxation Method

Reducing one component of the residual vector to zero is not generally the most efficient

way to reduce the norm of the vector r. The procedure (7.27) can be modified by

x
(k)
i = x

(k−1)
i + ω

r
(k)
ii

aii
. (7.28)

For certain choice of positive ω, the speed of convergence of x(k) → x can be accelerated.

For choice of ω < 1, the procedures are called under-relaxation methods, and can be

used to obtain convergence of some systems that are not convergent by the Gauss-

Seidel method. For choice ? greater than 1, the procedures are called over-relaxation

methods, which are used to accelerate convergence for systems that are convergent
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by the Gauss-Seidel technique. These methods are called Successive Over- Relaxation

(SOR).

The system of equations (7.28) can be written as

x
(k)
i = (1− ω)x(k−1)

i +
ω

aii


bi −

i−1∑

j=1

aijx
(k)
j −

n∑

j=i+1

aijx
(k−1)
j




or in matrix form

(D − ωL)x(k) = [(1− ω)D + ωU ]x(k−1) + ωb,

x(k) = (D − ωL)−1[(1− ω)D + ωU ]x(k−1) + ω(D − ωL)−1b.

Choose of ω

In order to make x(k) converge to x as rapidly as possible, the ω is to be

chosen to minimize ρ(Tω) where Tω = (D−ωL)−1[(1−ω)D+ωU ]. Although

no complete answer to this question is known for our general n × n linear

systems, the following results can be used in certain situations.

Theorem 7.8 If aii 6= 0, then ρ(Tω) ≥ |ω− 1|. This implies that ρ(Tω < 1

only if 0 < ω < 2.

Theorem 7.9 (Ostrowski-Reich). If A is a positive definite matrix and 0 <

ω < 2, then the SOR converges for any choice of initial approximate

solution vector x(0).

Theorem 7.10 If A is positive definite and tri-diagonal, then ρ(Tg) =

[ρ(Tj)]2 < 1 and the optimal choice of ω for the SOR is

ω =
2

1 +
√

1− ρ(Tg)
and ρ(Tω) = ω − 1.

SOR Algorithm for Solving Ax = b
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Input: Number of equations N, A, b, x0i, ω, Tol, Niter

Output: The solution xi or a message that the number of iterations was

exceeded.

Step 1: k ← 1

Step 2: while (k < Niter) do steps 3 to 5

Step 3: for i = 1 to N do

xi ← (1− ω)x0i +
ω

aii


bi −

i−1∑

j=1

aijxj −
n∑

j=i+1

aijx0j




Step 4: If ‖x− x0‖ < Tol then

Output x and the procedure completed successfully

STOP

Step 5: else

k ← k + 1

x0i ← xi

go to step 3

Step 6: Output “maximum number of iterations was exceeded”.

End

EXERCISES

Question 1 Solve the following linear systems using

a) Gaussian elimination (GE.), (2- digit rounding arithmetic) without

pivoting,
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b) GE. with maximal column pivoting ( 2- digits),

c) GE. with scaled-column pivoting ( 2- digits),

d) Exact arithmetic and determine which part, (a), (b), or (c) is the most

accurate.

{
10−2x + y = 1

x + y = 2

{
x1 + 2x2 + 3x3 = 1

2x1 + 3x2 + 4x3 = −1
3x1 + 4x2 + 6x3 = 2

Question 2 Find a factorization of the form A = LDLT for matrix

A =
[ 2 −1 0−1 2 −1

0 −1 2

]

Programming

Question 3 The attached subroutines LUFACT and SUBST are for solving Ax =

b. The routine LUFACT computes a LU factorization of A with scaled-column

pivoting PA = LU . The routine SUBST calculates x by forward and backward

substitutions: Ly = Pb, Ux = y. Document and modify the program such

that (1) all real values are stored with at least 12 digits of precision; (2) whole

array operations are used whenever possible; (3) use assumed-shape arrays in

procedures. Then write a main program which reads entries of A and b from a

data file and calls the subroutine to solve the following system

3.3330x1 + +15920x2 − 10.333x3 = 15913
2.2220x1 + 16.710x2 + 9.6120x3 = 28.544
1.5611x1 + 5.1791x2 + 1.6852x3 = 8.4254
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Algorithm for Subroutine LUFACT

This algorithm uses the Gaussian elimination process with scaled-column pivot-

ing to find the permuted LU factorization of A (namely, to find P and the LU

factorization of PA) where U is the upper triangular matrix obtained from the

elimination process; L is the lower triangular matrix which is the collection of the

multiples mij .

Step 1. Set s(i) = max1≤j≤n |aij |, (determine the size of each equation).

Step 2. For k = 1 to N − 1 do step 3 to step 6 (set 1st,...,(n-1)th column below

diagonal to zero)

Step 3. Find the (smaller) P ≥ k such that
∣∣∣apk

sp

∣∣∣ = maxk≤i≤n

∣∣∣aik

si

∥∥∥ .

(select pivot element for the step)

Step 4. If apk = 0 then

write ’(IERR=1, A is singular)’ then return.

Step 5. Else

Ek ↔ Ep, Pk ↔ Pp (row interchange)

(Pk records the order in which the equations

are to be processed)

Step 6. For i = k + 1 to n (do usual Gauss elimination process for the kth step)

Set mik = aik

akk
⇒ a(I, k))

Set aij = aij −mikakj (j = k + 1, ..., n)
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Step 7. If ann = 0, return “(IERR=1: A is singular)”

Return

Algorithm for SUBST

For i = 1 to n do
yi = b(pi)−

∑i−1
j=1 aijyj

Forward substitution (as Pb = b(pi))

For i = n to 1 by− 1 do

xi = 1
aii

[
yi −

∑n
j=i+1 aijxj

]
Backward substitution

End

Question 4 Based on the subroutines LUFACT and SUBST, write subroutines LU1

and SUB1, respectively for computing the LU factorization with partial pivoting

(without scaling) and for finding solution of Ax = b by forward and backward

substitution. Then, write a main program to call the subroutines to solve the

linear system in Question 1.

Question 5 Write a subroutine for LDLT factorization of a square matrix A, and

a separate subroutine for solving equations Ax = b by forward and backward

substitutions using the LDLT factorization. Then write a main program to call

the subroutines to solve the following linear system

4x1 + x2 − x3 = 7
x1 + 3x2 − x3 = 8
−x1 − x2 + 5x3 + 2x4 = −4
2x3 + 4x4 = 6

Algorithm for factorizing an n× n matrix A into LDLT decomposition

Input n and matrix A

Output L
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Set d1 = a11

For i = 2 to N do

set lij = 1
dj

[
aij −

∑j−1
k=1 likdkljk

]
j = 1, 2, ..., i− 1.

set di =
[
aii −

∑i−1
k=1 dkl2ik

]

Return

Question 6 Find the first two iterations of the Jacobi method for the following system,

using x(0) = 0 


10 −1 0
−1 10 −2
0 −2 10







x1

x2

x3


 =




8
7
6


 .

Question 7 Repeat Question 6 using the Gauss-Seidel method.

Question 8 Repeat Question 6 using the SOR method with ω = 1.2.

Question 9 Write a computer subroutine to implement the SOR iterative scheme for

Ax = b. Then solve Question 8 using Tol = 10−2, maximum number of iteration

Niter = 25, and ω = 0.5 and ω = 1.1, respectively.



Chapter 8

Stokes Problem and
Incompressible Flows

In this chapter, we firstly present, in section 8.1, the fundamental equations governing

the flow of incompressible Newtonian fluids. Then in section 8.2, we present the finite

element solution for a special case, namely the steady state flow of Stokes fluids. Then

in section 8.3, we give the general finite element formulation for the solution of the

transient flow of incompressible Newtonian fluids.

8.1 Fundamental Equations for the Flow of Fluids

Fluid dynamics is concerned with the study of fluids in motion. More specifically, it

concerns

• Kinematics of the flow field

• Stress distribution throughout the field

It is convenient to broadly classify fluid dynamics on the basis of constitutive equations

for the fluid and in terms of compressibility of the fluid, as illustrated in the following

145
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figure.

For example, the subject dealing with incompressible Newtonian fluids is referred

to as fluid dynamics for incompressible Newtonian fluids.

Remaks

• For most problems, liquids can be treated as incompressible fluids and, in general,

gases (except for low speed gas flows) must be considered as compressible.

• Many common fluids such as air and water can be modeled as Newtonian fluids.

Governing field Equations

The equations governing the flow of an incompressible Newtonian fluid consist of the

equations of motion
∂σij

∂xj
+ ρXi = ρ

Dvi

Dt
, (8.1)

the equation of continuity

div(v) =
∂vj

∂xj
= 0, (8.2)

and the constitutive equations

σij = −pδij + 2µdij , (8.3)

where
Dvi

Dt
=

∂vi

∂t
+ vj

∂vi

∂xj
= ai
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while the dij is the rate of deformation (also known as strain rate) and is related to the

velocity by

dij =
1
2

(
∂ui

∂xj
+

∂uj

∂xi

)

The above equations are all field equations which must be satisfied at all points within

a continuum.

To solve the above equations, substituting (8.3) into (8.1), we obtain

ρ
Dvi

Dt
= ρXj − ∂p

∂xj
δij + µ

(
∂2vi

∂xj∂xj
+

∂2vj

∂xi∂xj

)
. (8.4)

Using the continuity equation (8.2), we have

∂2vj

∂xi∂xj
=

∂

∂xi

(
∂vj

∂xj

)
= 0

and thus equations (8.4) becomes

Dvi

Dt
= Xi − 1

ρ

∂p

∂xi
+

µ

ρ
∇2vi (8.5)

which are the so called Navier-Stokes equations for incompressible Newtonian fluids.

The Navier-Stokes equations, written out in unbridged form, are

Du
Dt = X − 1

ρ
∂p
∂x + µ

ρ∇2u,

Dv
Dt = Y − 1

ρ
∂p
∂y + µ

ρ∇2v,

Dw
Dt = Z − 1

ρ
∂p
∂z + µ

ρ∇2w.

(8.6)

Remarks

a) The Navier-Stokes equations for other kinds of fluids can be derived using the

same process but with different constitutive equations.

b) The Navier-Stokes equations (8.5) together with the continuity equation (8.2) con-

stitute a system of four partial differential equations for four unknown variables
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u, v, w and p and thus is solvable in principle . These four partial differential

equations define all possible motions of an incompressible Newtonian fluid. The

feature which distinguishes one flow situation from another is the nature of the

boundary conditions satisfied by the velocity field v and p.

Boundary Conditions

Normal component of fluid velocity

When a fluid adheres to rigid, but possibly moving, surfaces bounding the fluid, evi-

dently at the rigid surfaces the normal component of fluid velocity must be the same

as for the rigid surfaces, as fluids cannot penetrate the solid.

Tangential component of fluid velocity

Two different boundary conditions may be used for the tangential velocity components.

(i) Assume that the tangential velocity component is likewise the same as that of the

rigid surface , which is known as no-slip condition.

(ii) Assume that slip can occur between the fluid and the rigid body, which is known

as slip condition.

It has been found that the no-slip condition accords with experimental observation on

real materials.

Traction boundary condition

In some applications, the traction forces on the surface of the fluid are prescribed,

namely

ti = σjinj = t̄i.
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8.2 Stokes Problem

Basic Equations

From section 8.1, the steady-state motion of an incompressible Newtonian fluid with

viscosity µ enclosed in the domain Ω ∈ R3 and acted upon by the volume load f is

governed by

Stokes equations: µ4ui − p,i + fi = 0 in Ω (i = 1, 2, 3)
Continuity equation: ui,i = 0 in Ω

Boundary condition: ui = 0 on ∂Ω (fixed boundary)

(8.7)

where we have used the index notation with repeated lateral index representing sum-

mation over the index range and (),i representing differentiation with respect to xi.

Variational Statement

Let v ∈ V = {v ∈ [H1
0 (Ω)]3 | div v = 0 on Ω } be a test function. To derive the finite

element equations, we set

∫

Ω

(µ4ui − p,i + fi) vi dΩ = 0. (8.8)

The above integral equation can be simplified by noting that

(i) ∇ · (vi∇ui) = ∇ui · ∇vi + vi∇ · ∇ui (∇ · ∇ = 42)

⇒ vi4ui = ∇ · (vi∇ui)−∇ui · ∇vi

Therefore,∫
Ω

vi4ui dΩ =
∫
Ω
∇ · (vi∇ui) dΩ− ∫

Ω
∇ui · ∇vi dΩ

=
∫

∂Ω
vi∇ui · n ds− ∫

Ω
∇ui · ∇vi dΩ

= 0− ∫
Ω
∇ui · ∇vi dΩ.
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(ii) p,ivi = (pvi),i − pvi,i = (pvi),i

Therefore,

∫
Ω

p,ivi dΩ =
∫
Ω
(pvi),i dΩ =

∫
∂Ω

pvini ds = 0.

Hence 8.8 becomes

µ

∫

Ω

∇ui · ∇vi dΩ =
∫

Ω

fivi dΩ. (8.9)

Thus, the variational statement for the problem is:

Find u ∈ V such that

a(u, v) = L(v) ∀v ∈ V (8.10)

where a(u, v) = µ
∫
Ω
∇ui · ∇vi dΩ

L(v) =
∫
Ω

fivi dΩ

V = {v ∈ [H1
0 (Ω)]3 | div v = 0 in Ω}.

Finite Element Formulation

We need to construct a finite-dimensional subspace Vn of V . This is not so easy as we

have to satisfy the condition div v = 0. For simplicity, consider 2-D cases in which

V = {v = (vx, vy) ∈ [H1
0 (Ω)]2 | div v =

∂vx

∂x
+

∂vy

∂y
= 0 in Ω}.

From calculus, it follows that if Ω does not contain any holes, then div v = 0 in

Ω iff v = rot ϕ ≡
(

∂ϕ
∂y − ∂ϕ

∂x

)
.

Thus,

v ∈ V ⇔ v = rot ϕ, ϕ ∈ H2
0 (Ω)

where ϕ is called stream function connected with the velocity field v.

Now, let Wh be a finite-dimension subspace of H2
0 (Ω) and define
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Vh = {v | v = rot ϕ, ϕ ∈ Wh}.

Then, we can formulate a finite element method in the usual way by replacing

V by Vh in the equation (8.10).

8.3 Flow of Incompressible Fluids

In this section, we present the finite element method for 2-D flows of incompressible

Newtonian fluids. From section 8.1, the governing equations for the problem is

ρ
(

∂ui

∂t + ujui,j

)
= −p,i + [µ(ui,j + uj,i)],j in Ω× I

ui,i = 0 in Ω× I

B.C. ui = ūi on Γu

ti = σijnj = t̄i on Γt

where σij = −pδij + µ(ui,j + uj,i) in Ω

I.C. ui(x, 0) = u0
i (x) in Ω

where I ∈ [0, T ].

(8.11)

Variational Statements

Let ri(x, t) = ρ
(

∂ui

∂t + ujui,j

)
+p,i− [µ(ui,j +uj,i)],j . The method of weighted residuals

seeks for (u, p) ∈ V ×Q such that for every t ∈ I

(ri, vi) = 0 ∀vi ∈ V and vi = 0 on Γu

(ui,i, q) = 0 ∀q ∈ Q

u(x, 0) = u0 in Ω
ui = ūi on Γu

(8.12)

where V and Q are velocity and pressure spaces and (·, ·) is the inner product defined

by (a,b) =
∫
Ω

a · b dΩ.

The detailed manipulations involving the integrals defined above are presented as fol-

lows.
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First, consider (ri, vi) = 0

Let Dui

Dt = ∂ui

∂t + ujui,j . Then we have from (8.12)
∫
Ω

ρDui

Dt vidΩ +
∫
Ω
[(pvi),i − (pvi,i)]dΩ− ∫

Ω
{[µ(ui,j + uj,i)vi],j − µ(ui,j + uj,i)vi,j} dΩ = 0

⇒∫
Ω

ρDui

Dt vidΩ +
∫
Ω
(−pvi,i + µ(ui,j + uj,i)vi,j dΩ +

∫
∂Ω

[pvjnj − µ(ui,j + uj,i)vinj ] ds = 0
(8.13)

As
−pvjnj + µ(ui,j + uj,i)vinj = [−pδijvi + µ(ui,j + uj,i)vi]nj

= σijnjvi = tivi,

we have from (8.13)
∫

Ω

ρ
Dui

Dt
vi dΩ +

∫

Ω

[−pvi,i + µ(ui,j + uj,i)vi,j ]dΩ =
∫

∂Ω

t̄ivi ds

As ∂Ω = Γu ∪ Γt and u is specified on Γu, we choose vi such that vi = 0 on Γu.

Therefore, the variational statement of the problem is:

Find (u, p) ∈ V ×Q such that for every t ∈ I,

(
ρDui

Dt , vi

)− (p, vi,i + (µ[ui,j + uj,i], vi,j) = b(t̄i, vi) ∀vi ∈ V0

(ui,i, q) = 0 ∀q ∈ Q

u(x, 0) = u0 in Ω
ui = ūi on Γu

(8.14)

where V = {v|v ∈ [H1(Ω)]2} V 0 = {v|v ∈ V and v = 0 on Γu}
Q = {v|v ∈ H1(Ω)}.

Finite Element Formulation

Let Vh ⊂ V be a N-D subspace of V with basis functions {φ1, φ2, ..., φN}. Approxi-

mating vi and q in (8.14) by

vih =
N∑

k=1

φkvik and q =
M∑

p=1

ϕpqp,
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we have
∑N

k=1{(ρDui

Dt , φk) + (µ[ui,j + uj,i], φk,j)− (p, φk,i)− b(t̄i, φk)}vik = 0

∑M
p=1(ui,i, ϕp)qp = 0

⇒




(ρ∂ui

∂t , φk) + (ρuj
∂ui

∂xj
, φk) + (µ[ui,j + uj,i], φk,j)− (p, φk,i) = b(t̄i, φk)

(ui,i, ϕp) = 0.
(8.15)

Approximating ui and p respectively by

uih =
N∑
1

φ`ui`, ph =
M∑
1

ψppp,

we have from (8.15) that

∑N
`=1{(ρφ`, φk)u̇i` + (ρujφ`,j , φk)ui` +(µφ`,j , φk,j)ui` + (µφ`,i, φk,j)uj`}

−∑M
p=1(ψp, φk,i)pp = b(t̄i, φk)

∑N
k=1(φk,i, ψp)uik = 0

which can be expressed in matrix form by

MU̇i + AUi − CP = F

−CT
1 U1 − CT

2 U2 = 0

or



M 0 0
0 M 0
0 0 0







U̇1

U̇2

Ṗ


+




2K11 + K22 + D K12 −C1

K21 K11 + 2K22 + D −C2

−CT
1 −CT

2 0







U1

U2

P


 =




F1

F2

0


 ,

(8.16)
where M = (mk`) with mkl = (ρφk, φ`) (k, ` = 1, 2, ..., N)

Kij = (Kij k`) with Kij k` = (µ∂φk

∂xi
, ∂φ`

∂xj
) (k, ` = 1, 2, ..., N ; i, j = 1, 2)

D = (Dk`) with Dk` = (ρuj
∂φ`

∂xj
, φk)

Ci = (Cikp) with Cikp = (ψp, φk,i)

Fi = (Fik) with Fik = b(t̄i, φk) =
∫
Γt

φk ds
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Time Integration

Two different kinds of integration schemes, implicit and explicit, can be utilized to solve

the system (8.16).

eg. Backward Euler: Ṁ Un+1−Un

4t + A(Un+1)Un+1 = Fn+1 -- implicit

Forward Euler: M Un+1−Un

4t + A(Un)Un = Fn -- explicit.

Note: In constructing a time integration scheme, questions of numerical stability and

accuracy must be considered.

EXERCISES

Question

Develop a variational statement for the stokes problem with boundary condition

ui = 0 on ∂Ω1 and ui = u0
i on ∂Ω2.



Chapter 9

Coupled Heat Transfer &
Turbulent Flows

This chapter is written based on our recent research results published in the pa-

per (Wiwatanapataphee, Wu, Archapitak & Siew 2004). In our work, a numerical

algorithm, based on the Galerkin finite element method and the enthalpy formulation,

is developed for solving the coupled turbulent fluid flow and heat transfer problem aris-

ing from an industrial process - the continuous steel casting process. The governing

equations consist of the continuity equation, the Navier-Stokes equations, the energy

equation and the modified K− ε equations. The formulation of the method is cast into

the framework of the Bubnov-Galerkin finite element method. The rest of the chapter

is organized as follows. Firstly, the continuous casting process is introduced in section

9.1 together with a brief introduction of the problem to be investigated. In section 9.2,

the mathematical model for the solidification process and the turbulence phenomena

are presented. In section 9.3, the numerical algorithm is presented followed by some

numerical results given in section 9.4.

155
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9.1 The Continuous Casting Process

In this section, we consider a coupled turbulent flow and heat transfer problem arising

from the study of the continuous steel casting process. Figure 1 shows the essential

feature of the continuous casting process. Molten steel is poured from a tundish through

a submerged entry nozzle into a water-cooled mould, where intense cooling causes a

thin solidified steel shell to form around the edge of the steel. The solidified steel

shell with a liquid pool in the center is then continuously extracted from the bottom

of the mould at a constant speed. The product is supported by a set of rollers, after

leaving the mould, cooled down by water sprays and then subsequently cooled through

radiation. When the completely solidified casting has attained the desired length, it is

cut off with a cutter.

The process involves many complex phenomena such as formation of oscillation

marks, heat transfer with a moving phase-change boundary and turbulent flow in the

mould. The understanding and control of heat transfer and fluid flow is essential for

the success of the process. Improper rate of heat extraction from the steel may lead

to surface cracks and break-outs of molten steel from the bottom of moulds. The flow

field of fluid affects the distribution of inclusion particles and of entrained slag particles

which can significantly influence the quality of products. Over the last few decades,

intensive studies have been carried out to model various aspects of the process, in

particular the flux flow (Fowkes & Woods 1989), the heat transfer and molten steel flow

(Bennon & Incropera 1987, Brimacombe, Samarasekera & Laid 1983, Flint 1990, Hill

& Wu 1994a, Lally, Biegler & Henein 1990, Wu, Hill & Flint 1994). Initial attempts are

mainly on heat transfer modeling, but recent work includes both turbulent fluid flow
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Figure 9.1: The continuous steel casting process

and heat transfer modeling. Most of these models use a velocity field pre-determined

by solving the momentum equations independently. Various commercial fluid dynamic

packages such as FIDAP (Thomas, Najjar & Mika 1990) and SIMPLE have also been

used for the analysis of heat flow and solidification in the casting process.

In spite of extensive modeling studies on fluid flow and heat transfer in the upper

region of continuous casting systems, little work has been done to solve the strongly

coupled problem of turbulent fluid flow and heat transfer with solidification and to

address the techniques for dealing with rapid change of temperature and fluid velocity

near the boundary layer. In this work, we focus on this aspect and develop a fully

coupled heat transfer - turbulent flow model based on an enthalpy formulation.

9.2 Heat Transfer-Turbulent Flow Model

(a) Governing Equations for Heat Transfer & Solidification

To simulate the process of heat transfer with phase change, a single domain enthalpy

method is used. The enthalpy of the material is defined as the sum of sensible heat
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h = cT and latent heat H, namely

Ht = h + H. (9.1)

The latent heat H in general can be expressed as

H = f(T )L, (9.2)

where L is the latent heat of steel and f(T ) is the local liquid fraction with value one

representing liquid state and zero for solid state. The liquid fraction generally is a

nonlinear function of temperature T but for simplicity, it is approximated here by the

following linear function

f(T ) =





0 T ≤ Ts

T − Ts
TL − Ts

Ts < T < TL

1 T ≥ TL

(9.3)

where TL and Ts are respectively the melting temperature and solidification tempera-

ture of steel.

From the principle of energy conservation, we have the following equation for the

region undergoing a phase change

ρ

(
∂Ht

∂t
+ ujHt,j

)
= (k0T,j),j , (9.4)

where we have used and will continue to use the suffix notation with repeated literal in-

dex representing summation over the index range and (.),j denoting differentiation with

respect to xj (Sokolnikoff 1986), uj represents the velocity component of fluid in the

xj direction, ρ and k0 are respectively the density and molecular thermal conductivity

of steel. Now on using the definition for the enthalpy Ht, we have

ρc

(
∂T

∂t
+ ujT,j

)
= (k0T,j),j − ST (9.5)
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with the source term ST representing the rate of change of the volumetric latent-heat

given by

ST = ρ

(
∂H

∂t
+ ujH,j

)
. (9.6)

Obviously, ST = 0 everywhere except in the region where phase change occurs. Now

with equation (5), there is no need to consider the solidified region and the liquid region

separately and there are no conditions to be satisfied at the phase-change boundary.

The equation can be applied to all the regions including the solid region, the mushy

region and the liquid region. Thus, the heat transfer - phase change problem can be

solved by using a single domain approach.

(b) Governing Equations for Turbulent Flows

The influence of turbulence on the transport of momentum and energy is modeled by

the addition of the turbulent viscosity µt to the laminar viscosity µ0 and the turbu-

lent conductivity kt = cµt/σt to the molecular conductivity k0, yielding the effective

viscosity µ and the effective thermal conductivity k given by

µ = µ0 + µt, k = k0 +
cµt

σt
, (9.7)

where σt is the turbulent Prandtl number (Launder 1988). Thus, the unified field equa-

tions governing the multiphase heat transfer and fluid flow with turbulence, for all the

regions with or without phase change, are as follows

ui,i = 0, (9.8)

ρ

(
∂ui

∂t
+ ujui,j

)
+ p,i − (µ(ui,j + uj,i)),j = Fi(ui, xi, t), (9.9)
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ρc

(
∂T

∂t
+ ujT,j

)
= (kT,j),j − ST , (9.10)

where Darcy’s law for porous media (Reddy & Reddy 1992) has been used for modeling

the flow in the mushy region and Fi(ui, xi, t) is thus determined by

Fi(ui, xi, t) = C
µ [1− f(T )]2

ρf(T )3
(ui − Ui), (9.11)

in which U = (0, U2) denotes the downward velocity of the solidified steel shell.

Equations (8)-(10) do not constitute a closed system as both µ and k are related

to an unknown function µt. Various models, such as the mixing-length type model,

the one-equation model and the two-equation (K − ε) model, have been proposed for

calculating µt. Ferziger (Ferziger 1987) and Launder (Launder & Spalding 1974), based

on a critical review, suggested that the simple mixing-length type model is suitable for

most boundary-layer type flows in the absence of recirculation; the one-equation model

can be used to model simple recirculation flows; while for more complex flow fields, the

two-equation model should be used. As the flow field in the continuous casting mould

is complex with circulation, we use the two-equation (K − ε) model for calculating µt.

With the standard K−ε model, the turbulent viscosity µt is determined (Ferziger

1987, Launder & Spalding 1974) by

µt =
ρCµK2

ε
, (9.12)

where Cµ is suggested to be 0.09, the turbulent kinetic energy K and its dissipation

rate ε are determined by

ρ

(
∂K

∂t
+ ujK,j

)
− (

µt

σK
K,j),j = −µt

σt
βgjT,j + µtG− ρε, (9.13)
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ρ

(
∂ε

∂t
+ ujε,j

)
− (

µt

σε
ε,j),j = C1(1− C3)

εµt

Kσt
βgjT,j

+ C1
ε

K
µtG− ρC2

ε2

K
, (9.14)

where G = 2εijεij with εij = (ui,j + uj,i) /2. The constants involved in equations (7) -

(14) are empirical constants. Extensive examination of turbulent flows has resulted in

a recommended set of values for these constants (Launder & Spalding 1974), namely

σt = 0.9, σk = 1, σε = 1.25, Cµ = 0.09, C1 = 1.44, C2 = 1.92, C3 = 0.8.

It has been well established that the above standard K − ε model is applicable

only to the highly turbulent region (far-wall region) and cannot be applied to the near-

wall region where viscous effects become dominant. In the modelling of the continuous

casting process, due to the phase change, the computational region typically includes

three different sub-regions including the solidified steel region, the mushy region and the

molten steel region. Obviously, the standard K−ε model is only applicable to the region

far from the solidified steel layer. Thus, in order to have a unified model applicable to all

the three regions, some modifications to the standard K−ε model are needed. Through

intensive research over the last few decades, various techniques have been proposed for

modelling flows near solid boundary such as the wall function approach and the low-

Reynolds number K−ε model (Chien 1982, Driest 1996, Jaeger & Dhatt 1992, Jones &

Launder 1973, Lam & Bremhorst 1981, Nagano & Hishida 1987, Reddy & Reddy 1992).

In the continuous steel casting, the boundary of the solidified steel shell is not known a

priori, thus the wall-function technique is not applicable to the problem. We therefore

use the low-Reynolds number K − ε model to accommodate the region with relatively

low local turbulent Reynolds number, in which some damping functions are added
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into the standard K − ε equations to reduce the effect of turbulence across the vis-

cous sub-layers. Firstly, based on the work in (Lam & Bremhorst 1981, Patel, Rodi &

Scheuerer 1985), the constant Cµ is modified to

Cµ = 0.09fµ, (9.15)

where fµ represents the generalized damping mechanism of turbulent transport in both

the liquid and mushy regions and is determined by

fµ =
√

f(T )exp(−3.4/(1 + Rt/50)2), (9.16)

where f(T ) is the liquid fraction as defined before in (3), Rt denotes the local turbulent

Reynolds number defined by

Rt =
ρK2

µε
. (9.17)

To ensure that all the terms in equations (9.13) and (9.14) will not tend to infinity

as K approaches zero in the near-wall region, the last term of the right hand side of

equation (14) is multiplied by a damping function fε defined by

fε = 1−Aεe
−R2

t , (9.18)

where Aε is a constant and is chosen as one if K < 10−4 or otherwise Aε = 0.3 (Jaeger

& Dhatt 1992, Jones & Launder 1973). By choosing Aε = 1 in (9.18), the new term

ρC2fεε
2/K in (9.14) approaches zero as K becomes small.

9.3 Finite Element Solution

For two dimensional problems, equations (7) - (14) can be manipulated to yield a

closed system of six partial differential equations in terms of six coordinate and time-
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dependent unknown functions (u1, u2, p, T, K and ε). The system, once supplemented

by the initial and boundary conditions, can be solved numerically to yield the velocity

and temperature fields and to determine the phase-change boundary. In this work, the

boundary conditions considered for each field variable include the Dirichlet type and

the Neumann/Robin type,i.e,

q = q̄, on ∂Ωq,

∂q

∂n
= g(q), on ∂Ωq2 ,

where ∂Ω = ∂Ωq

⋃
∂Ωq2 denotes the boundary of the computation domain Ω, q referes

to u1, u2, p, T, K and ε.

To solve the problem, firstly, the penalty function method is used to weaken the

continuity requirement (9.8) by the following equation

uj,j = −δp, (9.19)

where δ is a small positive number. The effect of the penalization is simply to relax

the incompressibility condition (8). For more details on the mathematical aspect of the

method, the reader is referred to references (Falk 1975). Thus, the pressure variable

can be eliminated from the system, overcoming the difficulty associated with proper

imposition of the pressure boundary condition. Hence, we end up with a system of

five partial differential equations in terms of five unknown functions u1, u2, T, K and ε.

To develop the variational statement for the boundary value problem, we consider the

following integral representation of the problem:

Find u1, u2, T, K and ε ∈ H1(Ω) such that for all test functions w1 ∈

H1
ou1

(Ω), w2 ∈ H1
ou2

(Ω), wT ∈ H1
oT (Ω), wK ∈ H1

oK(Ω) and wε ∈ H1
0ε(Ω), all
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the Dirichlet boundary conditions for the unknown functions are satisfied

and

(
∂ui

∂t
, wi) + (ujui,j , w

i)− ((
µ

ρ
(ui,j + uj,i)),j , w

i)− (
1
ρδ

uj,ji, w
i) = (

1
ρ
Fi, w

i),

(
∂T

∂t
, wT ) + (ujT,j , w

T )− ((
k

ρc
T,j),j , w

T ) = −1
c

{
(
∂H

∂t
, wT ) + (ujH,j , w

T )
}

,

(
∂K

∂t
, wK) + (ujK,j , w

K)− ((
µt

ρσK
K,j),j , w

K) = −(
µt

ρσt
βgjT,j − µt

ρ
G + ε, wK),

(
∂ε

∂t
, wε) + (ujε,j , w

ε)− ((
µt

ρσε
ε,j),j , w

ε) = (C1(1− C3)
εµt

Kρσt
βgjT,j

+ C1
εµt

Kρ
G− C2fε

ε2

K
,wε),

(9.20)

where (·, ·) denotes the inner product on the square integrable function space L2(Ω),

H1(Ω) is the Sobolev space W 1,2(Ω) with norm || · ||1,2,Ω, H1
0q(Ω) = {v ∈ H1(Ω)|v =

0 on ∂Ωq}. A standard procedure is then carried out to reduce the second order

derivatives involved in the above problem into the first order ones using integration

by parts. For example, by using integration by parts and the Neumann/Robin type

boundary condition, we have

((
µ

ρ
ui,j),j , w

i) = −(
µ

ρ
ui,j , w

i
,j) + (

µ

ρ
g(ui), wi)B , (9.21)

where (·, ·)B denotes the inner product on L2(∂Ωui2). Through this process, all second

order derivatives in (20) are reduced to first order ones ensuring that all integrals

involved are well defined.

To find the numerical solution of the problem, we pose the variational problem

into an N -dimension subspace. The computation domain Ω is discretized into a finite
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number of elements connected by N nodes. Let U,T,K and E denote respectively the

global vectors with each ith entry representing the value of the corresponding unknown

function at the ith node of the finite element mesh. Then, by using the Galerkin finite

element formulation, we obtain the following sets of ordinary differential equations

MuU̇ + AuU = F,

MṪ + AT T = M ′Ḣ + A′H + Fb,

MK̇ + AKK = FK ,

MĖ + AεE = Fε, (9.22)

where the superposed dot represents differentiation with respect to time and all coeffi-

cient matrices are global matrices assembled from element matrices. Matrices Mu, M

and M ′ correspond to the transient terms, matrices Au,AT , A′, AK and Aε correspond

to the advection and diffusion terms, and vector Fb are due to heat-flow at the bound-

ary, vector F provides forcing functions for the Navier-Stokes equations, and vectors

FK and Fε are respectively due to K−production dissipation and ε−production dissi-

pation. To keep details to minimum, formulae for calculation of the global coefficient

matrices and vectors are not given here.

From (9.22) a time integration scheme is then developed to find the finite element

solutions of the temperature and velocity fields at any instant of time. For more detail,

the reader is referred to reference [45].

9.4 Numerical Investigation

A test example is given here to demonstrate the validity of the mathematical model.

The example under consideration is a slab caster, with a mould width of 1750 mm, a
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narrow-face width of 236 mm and a depth of 800 mm. The submergence depth of an

entry nozzle is 230 mm, the nozzle ports are rectangular with a height of 76 mm and

a width of 54 mm. The port angle is 15o downward. Other system parameters are as

follows. The molten steel delivery velocity Uin = 1.08244 m/s, the melting temperature

of steel TL = 1525oC, solidification temperature TS = 1465oC, temperature of cooling

water T∞ = 20oC, external temperature Texit = 100oC, density of steel ρ = 7800

kg/m3, laminar viscosity µ0 = 0.001 pa · s, specific heat c = 465 J/kgoC, thermal

conductivity of steel k0 = 35 W/moC, latent heat L = 2.72 ×105 J/kg, surface heat

transfer coefficient h∞ = 1079.45 W/m2oC , emissivity of solid steel $ = 0.4, Stefan-

Boltzmann constant σ = 5.66 ×10−8 W/m2K4, morphology constant C = 1.8 ×106 =

m−2, casting speed U2 = 0.02167m/s. The molten steel has 5oC of super-heat above

the melting temperature. The delivery turbulent kinetic energy and its dissipation rate

are respectively 0.0502 m2/s2 and 0.457 m2/s3.

Figure 2(a) shows the velocity vectors in the upper part of the solution domain.

The flow pattern shows that there exist two circulation zones in the top part of the

casting. The flow become parallel further downstream. Figure 2(b) shows the temper-

ature distribution in the first 3 metres below the meniscus. The temperature profiles

clearly outline the path of the hot steel and show how the fluid carries heat with it.

Distribution of the turbulence quantities K and ε are shown in Figure 3. The

values of K and ε are very high near the nozzle opening. Close to the solid boundary,

the level of turbulence approaches zero. Values of turbulent kinetic energy and its

dissipation rate rapidly decrease in the circulation region and then reach the smallest

level in the solidified steel shell.
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Figure 9.2: Velocity and temperature profile (a) velocity vectors (m/s), (b) temperature
contours (oC)
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Figure 9.3: Contour plot of (a) turbulent kinetic energy K(m2/s2) and (b) dissipation
rate ε(m2/s3)
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Figure 9.4: Temperature distribution in the computational region
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Figure 9.5: Comparison of temperature profiles at the bottom of the mould obtained
by models with turbulence effect (solid line) and with no turbulence effect (dotted line)
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Figure 9.6: Comparison of temperature profiles in the first 3 metres below meniscus
obtained by models with turbulence effect and with no turbulence effect

Figure 4 shows the distribution of temperature field in the computational region.

It indicates that temperature drops very fast near the strand surface.

Figure 5 shows comparison of the temperature profiles at the bottom of the

mould obtained by models with turbulence effect and with no turbulence effect. It is

noted that the temperature profiles at the bottom of the mould obtained by the model

with turbulence effect is slightly lower than that with no turbulence effect.

Figure 6 shows the comparison of temperature contours in the first 3 metres

below the meniscus obtained by the models with and without turbulence effect. It is

noted that the average temperature from the model with turbulence effect is lower than

that with no turbulence effect in this region.
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Chapter 10

Multi-Phase Flows under EM
Force

This chapter is written based on our recent research results published in the paper (Wu

& Wiwatanapataphee 2007). In our work, we develop a mathematical model and finite

element based numerical technique to study the coupled turbulent flow and heat transfer

process in continuous steel casting under electromagnetic force. The complete set of

field equations are established and solved numerically. The influences of electromagnetic

field on flow pattern of molten steel and temperature field as well as steel solidification

are presented in the paper. The rest of the chapter is organized as follows. In section

10.1, a brief introduction of the problem to be investigated is given. In section 10.2,

the governing boundary value problem is presented followed by numerical formulation

in section 10.3 and numerical results in section 10.4.

171
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10.1 Steel Casting with Electromagnetic Stirring

Continuous steel casting is a heat extraction process for casting steel products from

molten steel. In this process, molten steel is poured continuously from a tundish through

a submerged entry nozzle into a water-cooled mould where intensive cooling results in

a thin solidified steel shell to form around the edge of the casting. The solidified steel

shell with a liquid pool in the center is then continuously withdrawn from the bottom

of the mould at a constant speed, as shown in Figure 9.1. To control the fluid flow

pattern and the steel solidification process, an electromagnetic field, generated from the

source current through the coil, is imposed to the system. The magnetic field induces

electric currents in molten steel and consequently generates a body force, namely the

electromagnetic force or Lorentz force. This body force acts on the molten steel and

consequently influences the flow of the molten steel and the steel solidification process.

Over the last few decades, extensive studies have been carried out worldwide to

model various aspects of the continuous casting process, in particular the heat transfer

and steel solidification process (Hill & Wu 1994b, Wu et al. 1994), the electromag-

netic stirring (Jenkins & Hoog 1996), the flow phenomena (Thomas 1990) and the

formation of oscillation marks. However, as analyzed by Thomas (Thomas 2001),

the continuous casting process involves a staggering complexity of at least eighteen

interacting phenomena at the mechanistic level. Due to this complexity, in the past,

research was focussed mainly on the modelling of each individual phenomenon or in-

teraction of two or three phenomena only. Hence, it is a worthwhile undertaking to

develop a sophisticated model capable of dealing with the staggering complexity of in-

teracting phenomena including turbulence, convection heat transfer, phase change and
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electromagnetic stirring.

In this work, we further develop our coupled heat transfer - turbulent flow model

by incorporating the effect of the electromagnetic field. The rest of the paper is or-

ganized as follows. In section two, a complete set of field equations are presented. In

section three, a brief description of the solution method is given. In section four, a

numerical study is presented to demonstrate the influence of the electromagnetic field

on the flow of molten steel in the central liquid pool and the distribution of temperature

as well as solidification of steel.

10.2 Mathematical Model

The continuous casting process involves many complex phenomena including turbulent

flow, heat transfer with phase change and electromagnetic stirring. These phenomena

interact one with another and thus the modelling of the continuous casting process

constitutes one of the most outstanding mathematical modelling problems.

A single domain enthalpy method is used to simulate the heat transfer and steel

solidification. Based on the principle of energy conservation and the formulation in

section 9.2(a) the equation for the heat transfer process in the continuous casting is

ρc

(
∂T

∂t
+ ujT,j

)
= (k0T,j),j − ρ

(
∂H

∂t
+ ujH,j

)
(10.1)

It should be remarked here that the last term on the right hand side of equation

(10.1) is equal to zero everywhere except in the region where phase change occurs.

Hence, equation (10.1) can be applied to all the regions including the solid region, the

mushy region and the molten steel region.

To model the flow of molten steel in the central liquid pool, the molten steel
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is assumed as an incompressible Newtonian fluid. The flow in the mushy region is

modeled by Darcy’s law for porous media. Thus, the unified field equations governing

the fluid flow for all the regions with or with no phase change are as follows

ui,i = 0, (10.2)

ρ

(
∂ui

∂t
+ ujui,j

)
+ p,i − (µf (ui,j + uj,i),j = Fi(ui, xi, t) + ρgi + Femi, (10.3)

where Fi is determined by

Fi(ui, xi, t) = C
µf [1− f(T )]2

ρf(T )3
(ui − (Ucast)i) (10.4)

The influence of electromagnetic field on the transport of momentum is modeled

by the addition of the electromagnetic force in the momentum conservative equation

(10.3). Based on on our previous work in (Archapitak, Wiwatanapataphee, Wu &

Tang 2004), the electromagnetic force can be determined by

Fem = J× (∇×A) (10.5)

where A is the magnetic vector potential which is governed by the following equation

1
µ
∇× (∇×A) = J (10.6)

where J = Js − σ ∂A
∂t − σ∇φ, µ and σ denote the magnetic permeability and elec-

troconductivity, Js is the source current density, φ is a scalar potential function. It

should be addressed that in deriving equation (9) from the Maxwell’s equations, we

have neglected the influence of the displacement current and flow induced current on

the magnetic field generated by the source current.

The influence of turbulence on the transport of momentum and energy is mod-

eled by the addition of the turbulent viscosity µt to the laminar viscosity µ0 and the
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Figure 10.1: Computation domain (a = 0.1 m.)

turbulent conductivity kt = cµt

σt
to the molecular conductivity k0 as described in section

9.2(b).

10.3 Method of Solution

As shown in section two, the electromagnetic field problem can be uncoupled from the

fluid flow - heat transfer problem. Thus, the electromagnetic field problem is solved first

to yield the electromagnetic force for subsequent fluid flow and heat transfer analysis.

For the electromagnetic field, in this work, we are concerned with two-dimensional

problems with A, J and φ taking the following forms in the coordinate system as shown

in Figure 10.1,

A = (0, A2(x, z, t), 0), J = (0, J2(x, z, t), 0), φ = constant. (10.7)
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Substituting equation (14) into (9), we have

A2,jj = µσ
∂A2

∂t
− µJs2. (10.8)

For the case of sinusoidal source current, i.e. Js2 = jse
iωt, the above equation admits

solution of the following form

A2 = a(x, z)eiωt (10.9)

and equation (15) becomes

a,jj − β2a = −µjs, (10.10)

where β2 = σµωi and i =
√−1.

To solve equation (17) numerically, we firstly develop the following associated

variational boundary value problem:

Find a ∈ H1
0 (Ω) such that ∀w ∈ H1

0 (Ω)

(a,j , w,j) + β2(a, w) = µ(js, w) (10.11)

where w is the so called weight function or test function, (·, ·) denotes the inner product

on the square-integrable function space L2(Ω) and H1
0 (Ω) is defined as follows

H1
0 (Ω) =

{
v|v,

∂v

∂x
,
∂v

∂z
∈ L2(Ω) and v = 0 on ∂Ω

}
. (10.12)

The Galerkin finite element method is then used to discretize the problem in

space to yield the following system of equations

N∑

i=1

[
(ψi,j , ψk,j) + β2(ψi, ψk)

]
ai = µ(js, ψk) (k = 1, 2, ..., N). (10.13)

Once the solution of the above system is obtained we can determine the magnetic vector

potential A by

A = eiωt[0, a(x, z), 0] (10.14)
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and consequently we can calculate J and Fem.

For the coupled fluid flow - heat transfer problem, firstly, the penalty function

method is used to weaken the continuity requirement by

uj,j = −δp (10.15)

where δ is a small positive number. Thus, the pressure variable can be eliminated

from the system. Hence, for two dimensional cases, we have a closed system of partial

differential equations, (10.1)-(10.6), in terms of five coordinate and time-dependent

unknown functions (u1, u2, T, K and ε). To find the numerical solution, the governing

partial differential equations are discretized in space by the Galerkin finite element

method to yield the following system of nonlinear ordinary differential equation

Mq̇ + Kq = f(q), (10.16)

where q = {(u1i, u2i, Ti, Ki, εi)}N
i=1 represent the values of u1, u2, T, K and ε on

the finite element nodes (i = 1, 2, ..., N). The matrix M corresponds to the transient

terms in the governing partial differential equations, the matrix K corresponds to the

advection and diffusion terms, and the vector f depends nonlinearly on ui, T, K and

ε. To keep details of the paper to minimum, the specific form of each of the matrices

and vectors are omitted here.

The numerical solutions to the nonlinear discretization system with appropriate

boundary conditions are then obtained by using an iterative scheme. The following

convergence condition was used in the simulation

‖Rm+1
i −Rm

i ‖
‖Rm

i ‖
≤ tol, (10.17)
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Table 10.1: Parameters used in numerical simulation
Parameter Symbol Value Unit
Pouring temperature Tm 1530 oC
Molten temperature TL 1525 oC
Solidification temperature TS 1465 oC
Density ρ 7850 kg/m3

Viscosity µ0 0.001 pa · s
Specific heat c 465 J/kgoC
Thermal conductivity of steel k0 35 W/moC
Latent heat L 2.72 ×105 J/kg
Morphology constant C 1.8 ×106 m−2

Casting speed Ucast 0.028 m/s
Magnetic permeability of vacuum µ 4π × 10−7 Henry/m
Electric conductivity σ Ω−1m−1

- steel 4.032×106

- coil 1.163×107

Electric permittivity of vacucm ε 8.8540×10−12 Farad/m

where the superscript m + 1 and m denote iterative computation steps, Ri is residual

and tol is a small positive constant.

10.4 Numerical Investigation and Discussion

The influence of electromagnetic field on the coupled turbulent flow and steel solid-

ification is investigated in the present study. The example under investigation is a

rectangular caster which has a width of 0.1 m and a depth of 0.4 m in the x− z plane.

The computation region is as shown in Figure 2. The finite element mesh, used in this

study, consists of 15,104 tetrahedron elements with a total of 99,889 degrees of freedom.

The system parameters are as listed in Table 1.

Figure 3 shows the magnetic flux density vector B (i.e. ∇×A), the contour plot of a(z, t)

and the electromagnetic force Fem corresponding to different external source current
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density js. The results show that the electromagnetic force acts on the molten steel

basically in the horizontal direction toward the central line. This force will contribute

to preventing molten steel from sticking to the mould wall and smoothing the steel

casting surface. The results have also shown that the magnitude of the force can be

controlled by controlling the imposed source current density. The magnitude of the

force increases as the current density increases as shown in Figure 5.

Figure 4 shows the influences of source current density on velocity and tempera-

ture fields in molten steel. The electromagnetic field applied to the system suppresses

the melt flow and results in reduction of velocity in the mould region and leads to

more uniform melt flow below the mould. The suppression of the jet melt flow, by the

imposed electromagnetic field, causes the reduction of advective heat transfer to the

casting surface. Therefore, superheat is not removed sufficiently on the casting surface,

resulting in the increase of energy level in the overall liquid region and the increase

in temperature gradients near the solidified shell. The increased temperature gradient

near the solidifying shell increases the diffusion heat flux to the shell surface, resulting

in thicker solidified shell. The temperature profiles on a horizontal section 0.4 m below

the meniscus (i.e. at exit of the mould) for various different current densities are shown

in Figure 6. With the increase of current density, the thickness of the solidified shell

increases significantly.
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(1) Je
s = 10, 000A/m2

(2) Je
s = 50, 000A/m2

(3) Je
s = 100, 000A/m2

Figure 10.2: Influence of external current density on (a) the magnetic flux density B;
(b) the magnetic potential Az; (c) The electromagnetic force Fem.
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(1) Je
s = 10, 000A/m2

(2) Je
s = 50, 000A/m2

(3) Je
s = 100, 000A/m2

Figure 10.3: Influence of external current density on the fluid flow and heat transfer
(a) velocity field of molten steel; (b) Temperature profiles.
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Figure 10.4: Influence of source current density on the magnitude of electromagnetic
force at the horizontal section 0.055 m below the meniscus.

Figure 10.5: Influence of source current density on the temperature profile at the hori-
zontal section 0.4 m below the meniscus.



Chapter 11

Blood Flows in Stenosed
Arteries

This chapter is written based on our recent research results published in the pa-

pers (Wiwatanapataphee, Poltem, Wu & Lenbury 2006, Wiwatanapataphee 2008). In

our work, a numerical technique based on the finite element method is developed to

simulate the flow of blood through stenosed coronary arteries taking into account of

arterial wall deformation under pulsatile flow condition. In section 11.1, a brief intro-

duction is given to describe the background of the problem investigated. In section

11.2, a complete set of equations is presented for the flow of blood through stenotic

arteries followed by the solution method in section 11.3 and numerical results in section

11.4.

11.1 Stenosis and Cardiovascular Disease

The blood circulatory system consists of various parts such as the heart, the arterial

and the venous systems as well as the microcirculatory systems. The heart contracts

183
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and relaxes about 70 times per minute to push blood through the thousands of arteries

and veins. Fig. 11.1 shows the blood circulation in the heart. The right ventricle of the

heart pumps blood through the arteries to the lungs where the red blood cells absorb the

oxygen and release the carbon dioxide. Then the bright red, freshly-oxygenated blood

goes to the left ventricle of the heart from which blood is pumped into the arteries and

goes around the body. As it goes along the body, the blood transfers oxygen to the body

cells and receive the waste product. Then, the impure blood flows into the right auricle

through veins. The live arteries can change and adapt to new hemodynamic condition.

Figure 11.1: The blood circulation in the heart

The presence of unusual hemodynamic condition in the arteries often creates abnormal

biological responses. Skewing of the blood speed in some region could cause oscillating

direction of wall shear stress which can create pockets leading to atherosclerotic disease.

The skewing of velocity tends to be localized and results in the narrowing of the artery

lumen - a stenosis. In the arteries with high grade stenoses, very high shear stresses

near the throat of the stenosis can activate the platelets. This induces thrombosis, and
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may totally block the blood flow to the heart and lead to heart attacks and stokes.

Cardiovascular disease is one of the major causes of death in developed countries.

Most of the cases are associated with some form of abnormal blood flow in arteries due to

the existence of stenoses. When the coronary artery is affected by a stenosis, critical flow

conditions occur, such as flow separation, high wall shear stress and wall compression,

which are believed to be the significant factors at the onset of coronary heart diseases.

In recent years, surgical treatments of cardiovascular diseases have been developed

rapidly, and coronary artery bypass grafting (CABG) has been widely used for patients

with severe stenosis. A large number of bypass grafts are implanted worldwide each

year. However, up to 25 percents of the grafts fail within one year and up to 50 percents

fail within ten years after surgery. Today, it has been recognized that one of the most

important determinations in a successful bypass operation is the information of the

rheological behavior of blood, the flow speed, the pressure distribution, the wall shear

stress in the stenotic artery, and the wall deformation in cardiac cycles.

In order to understand the pathogenesis of coronary diseases, a number of in-

vivo and vitro experiments have been conducted using animal models. Due to the

difficulty in determining the critical flow conditions for both in-vivo and vitro exper-

iments, the exact mechanism involved is not well understood. On the other hand,

mathematical modeling and numerical simulation can lead to better understanding of

the phenomena involved in vascular diseases. Thus, over the last two decades, var-

ious mathematical models based on the finite element method have been proposed

to describe the rheological behavior of blood in stenotic arteries. However, some of

the studies describe the fluid flow without taking into account of the motion of the
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arterial wall, while some others concentrate on the behavior of the structure with-

out taking into account of the fluid flow (Chandran, Mun, Choi, Chen, Hamilton,

Nagaraj & McPherson 2003, Tada & Tarbell 2000, Tada & Tarbell 2004, Karner &

Perktold 2000, Stangeby & Ethier 2002, Jung, Choi & Park 2004, Simon, Kaufmann,

McAfee & Baldwin 1993, Holzapfel, Gasser & Stadler 2002).

It is well established that the fluid-structure interaction determines the behavior

of blood flow through arteries. Recently, various studies have focused on the coupled

fluid flow - arterial wall deformation problem (McCracken & Peskin 1980, Chahboune

& Crolet 1998, Gerbeau, Vidrascu & Frey 2005). Chahboune and Crolet (1998) pro-

posed a two-dimensional mathematical model and a numerical algorithm based on the

finite element method for the fluid-structure interaction during the cardiac cycle. The

model is used to couple the flow of blood with the motion of the arterial wall of the left

ventricle. A three dimensional model has been proposed for the fluid-structure interac-

tion in the arteries (Gerbeau et al. 2005). Queen (1992) developed a three-dimensional

model of the heart including the four chambers, the four valves system and the exiting

vessels. Gerbeau, Vidrascu and Frey (2005) proposed a three-dimensional model and a

numerical algorithm to simulate the fluid-structure interaction in large compliant ves-

sels where large displacement occurs but the biological interpretation of the results are

not given. So far, none of the models seems to be completely satisfactory for all kinds

of flow regimens.

In this study, we consider the flow of blood through coronary arteries with an

unsymmetrical stenosis. A mathematical model is developed to study the unsteady

state blood flow through a stenotic artery and the deformation of the arterial wall
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in a cardiac cycle. Human blood is considered as an incompressible non-Newtonian

fluid and the arterial wall is modelled as a poro-elastic material. Using three different

geometry domains of a curved artery with three different size of stenosis, 25%, 50% and

75%, numerical simulations based on the finite element method are carried out for the

flow field, pressure field, internal wall shear stress and the wall deformation in a cardiac

cycle. Dependence of the flow field on the severity of stenosis and wall-interaction will

be discussed.

11.2 Mathematical Model

The structure of a typical cross section of an arterial wall is shown schematically in Fig.

11.2. It is composed of three embedded layers including the tunica intima, the tunica

media and the adventitia. The innermost layer is the tunica intima which consists of a

thin layer of endothelial cells, connective tissue and basement membrane. The middle

layer is the tunica media which comprises the smooth muscle cells and a continuous

interstitial fluid phase of proteoglycan and collagen fiber. The outermost layer is the

adventitia which is made up mostly of stiff collagenous fibers having an elastic modulus

of 108−109 dyn/cm2. Blood is transported mainly in the artery lumen but some could

be transported through the endothelial and intimal layers and the media. Precise blood

flow analysis requires simulating the flow of blood through the lumen and the various

layers in deforming blood vessels. To make the model simple and more tractable, the

entire arterial wall is assumed as one poro-elastic layer.

The model in this study uses two coordinate systems. One is a fixed mesh system

ΩF , in which the fluid model in the lumen region is solved. Another system is a moving
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Figure 11.2: The cross section of an artery

mesh ΩS(t), corresponding to the deformed geometry of the structure, in which the fluid

model in the arterial wall is solved. Blood is assumed to be an incompressible non-

Newtonian fluid. The non-Newtonian Carreau model is used to determine the viscosity

of blood. Blood flow in the lumen region is governed by the continuity equation and

the Navier-Stokes equations, while blood flow in the porous wall is described by the

Brinkman equations. The wall deformation is modelled by the equations of classical

elastodynamics. The velocity fields u in the luminal channel and v in the wall and

the displacement d(x, t) of the arterial wall are computed in a fully coupled manner

through the use of the fluid-structure interface condition.

(a) Governing Equations for Blood Flows

Human blood consists of plasma fluid, red blood cells, white blood cells and throm-

bocyte. The blood plasma is made up of about 90-95% water and contains numerous

dissolved materials such as proteins, lipoproteins and ions by which nutrients and wastes

are transported. The elements of blood seem to be continuous, with no empty space
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between the cells. Blood can therefore be assumed as a continuum medium. The small

semisolid particles of red blood cells create the viscosity of blood. When the red blood

cells clump together into larger particles at low shear rate, the non-Newtonian behav-

ior becomes most evident. It has been generally accepted that when the shear rate is

greater than 100 s−1 (Bonert, Myers, Fremes, Williams & Ethier 2002, Fei, Thomas &

Rittgers 1994, Song, Sato & Ueda 2000), human blood behaves as an incompressible

Newtonian fluid and thus the stress - deformation rate relations are described by the

Newtonian model :

σF
ij = −pF δij + 2µDij , (11.1)

where µ is the blood viscosity and D denotes the rate of deformation tensor

Dij =
1
2
(ui,j + uj,i)

However, when the shear rate is lower than 100 s−1, blood behaves as a non-Newtonian

fluid and the stresses depend nonlinearly on the deformation rate. Various non-Newtonian

models have been proposed including the Power law model, the Carreau model and etc.

In all these models, the stresses are related to the deformation rate by

σij = −pF δij + 2µn(γ̇)Dij , (11.2)

which is similar to the Newtonian model except that the viscosity is a function of shear

rate instead of a constant. In different non-Newtonian models, the relation between

the viscosity µn and the shear rate γ̇ =
√

2D : D is different. In the Carreau model,

µn = µ∞ + (µ0 − µ∞)[1 + (λγ̇)2](n−1)/2 for the constant values of µ0, µ∞, λ and n;
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in the power law model, µn = mγ̇n−1 for the constant values of m and n, while in the

generalized power law model, µn = λ|γ̇|n−1 in which the functions λ and n depend on

the shear rate, γ̇ (Johnston, Johnston, Corney & Kilpatrick 2004). So far, there is no

universally accepted non-Newtonian model for blood. Thus, analysis of the effect of

using different models on blood flow is still a worthwhile undertaking.

In the luminal region ΩF , the equations governing the flow of blood include the

constitutive equation (11.2), and the continuity equation as well as the stress equations

of motion as detailed below

ui,i = 0, (11.3)

ρF

(
∂ui

∂t
+ ujui,j

)
=

∂σF
ji

∂xj
+ FF

i , (11.4)

where ρF denotes the blood density which is 1.06g cm−3, ui represents the component

of velocity vector in the ith direction, and FF is the volume force acting on the fluid.

In the porous media of the cardiac wall ΩS , blood flow is described by the

following continuity equation and the Brinkman equations,

vi,i = 0, (11.5)

ρF ∂vi

∂t
+

µ

κ
vi = −pS

i + (µ(vi,j + vj,i)),j + FS
i , (11.6)

where µ denotes the viscosity in porous layer, κ is permeability, vi represents the

component of velocity vector in the ith direction, pS denotes pressure, and FS is the

body force acting on the fluid in the wall.

(b) Governing equations for arterial wall deformation

The arterial wall is assumed as an elastic material. During a cardiac cycle, blood

pressure acting on the inner wall surface varies with time, and thus the arterial wall
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deformation is a function of time. The dynamic wall deformation can be modeled by

the equations of classical elastodynamics:

ρs ∂2d
∂t2

= G∇2d + (λ + G)∇(∇ · d) (11.7)

where ρs is the density of the structure, d denotes the displacement vector, λ and G are

the Lamé constants which are related to the material Young’s modulus E and Poisson’s

ratio ν by

λ =
Eν

(1 + ν)(1− 2ν)
, G =

E

2(1 + ν)
.

(c) Boundary and interface conditions

To specify the boundary conditions for the blood flow, we consider precisely the blood

flow mechanism. The heart is a two-step pump: first the atria, then the ventricles

contract. The heart ejects and fills with blood in alternating cycles known as systole

and diastole. Blood is ejected from the left ventricle into the arterial system during

systole. The heart rests during diastole in which no blood is ejected. The cyclic

nature of the heart pump creates pulsatile conditions in all the arteries. The pulsatile

characteristic of pressure varies in different part of the arterial system.

Fig.11.3 shows the periodic blood pressure and flow rate waveforms oscillating

between the systolic and diastolic levels with cardiac period T . Ignoring the variation

in different cardiac cycles, the pulsatile pressure and flow rate are given by

p(t) = p(t + nT ) and Q(t) = Q(t + nT ), n = 0,±1,±2, . . . .
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Figure 11.3: The periodic blood pressure and flow rate waveforms of the right coronary
artery oscillating within systolic and diastolic levels with cardiac period T = 0.9s.

Mathematically, a periodic function can be expressed as a Fourier series. Based on a

typical set of data, we obtain the following Fourier series representations

Q(t) = Q̄ +
4∑

n=1

αQ
n cos(

2nπt

T
) + βQ

n sin(
2nπt

T
) (11.8)

and

p0(t) = p̄ +
4∑

n=1

αp
ncos(

2nπt

T
) + βp

nsin(
2nπt

T
), (11.9)

where Q̄ = 0.0896 litre/mimute and p̄ = 95.3333 mmHg are respectively the mean

flow rate and mean pressure respectively, T is the cardiac period, and the values of αQ
n ,

αp
n, βQ

n and βp
n are as in Table below.

We therefore impose a pulsatile flow rate condition on the inlet boundary and a corre-

sponding pulsatile pressure condition on the outlet boundary of the computation region.

The boundary conditions for the velocity and pressure fields thus include both Dirichlet
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Table 11.1: Values of parameters used in computation

n αQ
n βQ

n αp
n βp

n

1 0.0393 0.0241 5.9369 3.6334
2 -0.0360 0.0342 -11.1997 2.1255
3 -0.0131 0.0026 -2.2778 -3.7528
4 -0.0035 -0.0041 2.7333 -0.6375

type and Neumann/Robin type, i.e, for i, j = 1, 2, 3

u1 = 0, u2 = ū0(t) ∗ cos(π
3 ), u3 = ū0(t) ∗ sin(π

3 ) on ∂ΩF
in

p = p0(t), (µn(ui,j + (uj,i)) · n = 0 on ∂ΩF
out

(11.10)

where ū0(t) = Q(t)
A , A denotes the inlet cross-section area of the artery, Q(t) is the

pulsatile flow rate and p0(t) represents the pulsatile pressure.

On the interface between the lumen and the arterial wall ΓF/S , the expression

for the velocity must be continuous across the interface. We thus set

v = u =
∂d
∂t

. (11.11)

The movement of the inflow boundary ∂ΩS
in of the structure is assumed to be restricted

in all directions,

d(x, t) = 0. (11.12)

The movement of the outflow boundary ∂ΩS
out and other boundaries of the struc-

ture is moved freely in all directions.
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11.3 Method of Solution

By substituting equations (11.2) into (11.4), we obtain the Navier-Stokes equations for

the flow of blood in the lumen region. The Navier-Stokes equations, together with the

Brinkman equations (6), the continuity equations (11.3) and (11.5), and the elastody-

namic equations, constitute a system of eleven equations in terms of eleven unknown

functions pF , u1, u2, u3, pS , v1, v2, v3, d1, d2 and d3. To solve the problem, firstly

the penalty function method is used to weaken the continuity requirement (11.3) and

(11.5) by the following equations

uj,j = −δpF (11.13)

vj,j = −δpS (11.14)

where δ is a small positive number. Thus, the pressure variables can be eliminated

from the system.

To develop the variational statement for the boundary value problem, we consider

the following integral representation of the problem.

Find u ε [H1(ΩF )]3, v ε [H1(ΩS)]3 and d ε [H1(ΩS)]3 such that for all test

functions û ε [H1
0u(ΩF )]3, v̂ ε [H1

0v(ΩS)]3, d̂ ε [H1
0d(ΩS)]3, all the Dirichlet boundary

conditions for the unknown functions are satisfied and

(ρF ∂ui

∂t
, ûi) + (ρF ujui,j , ûi)− ((µ(ui,j + uj,i)),j , ûi)− (

1
δ
(uj,ji, ûi) = (FF

i , ûi),

(11.15)

(ρF ∂vi

∂t
, v̂i)+ (ρF µ

κ
vi, v̂i)− ((µ(vi,j + vj,i)),j , v̂i)− (

1
δ
(vj,ji, v̂i) = (FS

i , v̂i), (11.16)
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(ρS ∂2di

∂t2
, d̂i)− (Gdi,jj + (λ + G)dk,ki, d̂i) = 0, (11.17)

where (·, ·) denotes the inner product on the square integrable function space L2(Ω),

H1(Ω) is the Sobolev space W 1,2(Ω) with norm ‖ · ‖1,2,Ω,H1
0u(Ω) = {vεH1(Ω)|v =

0 on ∂Ω}. A standard procedure is then carried out to reduce the second-order spatial

derivatives involved in the above problem into the first-order ones using integration by

parts to ensure that all integrals involved are well defined.

To find the numerical solution of the problem, we pose the variational problem

into an N -dimension subspace and the computation domain Ω is discretized into a

finite number of elements connected by N nodes. By using the Galerkin finite element

formulation, we obtained the following systems of ordinary differential equations

Mf ∂U

∂t
+ KfU = Ff , (11.18)

Ms ∂V

∂t
+ KsU = Fs, (11.19)

Mw ∂2d
∂t2

+ Kwd = Fw, (11.20)

where the matrices Mf , Ms and Mw correspond to the transient terms, while Kf , Ks

and Kw correspond to the advection and diffusion terms. To keep details to minimize,

we omit the specific form of each matrix and vector here.

For convenience in using the interface boundary calculation, we denote ∂d
∂t by q

and use the following approximation

q(t) =
∂d
∂t

=
d(t)− d(t−4t)

4t
. (11.21)

Thus, at a typical instant of time t, system (11.20) in term of q(t) becomes

Mw dq

dt
+ K̄wq = F̄w, (11.22)
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where F̄w = Fw −Kwdn and K̄w = 4tKw.

Now we are ready to couple the fluid flows and the wall deformation. To imple-

ment the compatibility conditions, the equations in each domain are partitioned into

two parts including those corresponding to the interface boundary and others. Thus,

from (11.18), (11.19) and (11.20), we have

MU̇ + KU = F, (11.23)

where

M =




Ms
ss Ms

sB 0 0
Ms

Bs Ms
BB + Mf

BB + Mw
BB Mf

Bf Mw
Bw

0 Mf
fB Mf

ff 0
0 Mw

wB 0 Mw
ww




K =




Ks
ss Ks

sB 0 0
Ks

Bs Ks
BB + Kf

BB + K̄w
BB Kf

Bf K̄w
Bw

0 Kf
fB Kf

ff 0
0 K̄w

wB 0 K̄w
ww




U =
[ vsvsBufqw

]
and F =




Fs

Fs
B + Ff

B + F̄w
B

Ff

F̄w


 .

A standard backward Euler scheme is then used to solve the above system of

ordinary differential equations to determine the velocity and pressure fields at any

instant of time.

11.4 Numerical Results and Discussion

A test example is given here to study the flow of blood through a stenosed artery.

Fig. 11.4 shows the angiogram of a stenosed coronary artery. The examples under con-

sideration are stenotic arteries with 25%, 50% and 75%-area severity. The computation
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Figure 11.4: The right coronary artery with stenosis.

region, as shown in Figure 11.5, represents the right coronary artery with a 50% steno-

sis with spherical curvature located at 2.35 cm from the inlet boundary. The diameter

of the lumen is 0.2 cm and the wall thickness is 0.025 cm. The arc length of the artery

is 6.7 cm for a typical coronary artery in this investigation.

The computation domains for the cases with 25%, 50% and 75%-area severity

are respectively discretized into 8,536 tetrahedron elements with 68,265 degrees of free-

dom, 7,946 tetrahedron elements corresponding to 63,455 degrees of freedom and 8,898

tetrahedron elements corresponding to 70,607 degrees of freedom (u, pF in the lumen

region, v, pS , and d in the wall region). The solutions were computed for 5 cardiac

cycles (t=0.0 to 4.5 second) to ensure reproducibility of the pulsatile characteristic flow.

To determine the inlet pulsatile flow rate and outlet pulsatile pressure, the pa-

rameters listed in Table 11.1 are used. In this study we assume that (1) pressure at

the exit boundary in the lumen region is always between 80− 120mmHg and (2) The

mean flow rate Q̄ at the inlet boundary depends on the percentage of area-severity

of the stenotic artery. From numerical experiments, we found that the corresponding
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Figure 11.5: The 3-D geometry of the 50% stenotic artery.

mean flow rate at the inlet boundary of the 25% and 50% stenotic arteries is Q̄ =0.0896

litre/min while Q̄ = 0.0514 litre/min for the 75% stenotic artery.

Figure 11.6 depicts the velocity field in the luminal channel with 75%-area sever-

ity at the peak of diastole (t=1.95s). The plot clearly shows the flow pattern. In

upstream from the stenosis, the velocity profile in the flow direction is parabolic and

the fluid passes through the stenosis at jet speed, especially at the throat of the steno-

sis. Figures 11.7(a)-(b) show the pressure distributions along a longitudinal line of the

50% and 75% stenotic arteries during the systolic and diastolic periods. It shows that

the pressure drops very significantly near the stenosis site and creates a jet flow at the

throat of the stenosis. Higher area severity generates higher pressure drop around the

stenosis site as expected.

The pulsatile patterns of blood flow, pressure field and shear rate at a point

around the stenosis site in the lumen region of the stenotic artery with 50% and 75%-

area severity are demonstrated in Figures 11.8(a) and 11.8(b), respectively. The results

show that at a point around the 50% stenosis, blood speed varies between 18 - 141.261

cm/s and shear rate is between 200-3000 s−1 while at a point around the 75% stenosis,



11.4. NUMERICAL RESULTS AND DISCUSSION 199

Figure 11.6: Velocity filed in the luminal channel of the 75% stenotic artery at the peak
of diastole

blood speed varies between 340 - 450 cm/s and shear rate is between 2.8 - 4 ×104s−1.

In the wall region at a point near the exit boundary, wall deformation varies between

0.01-0.05 cm, velocity field is between 0-2.25 ×10−8cm/s and pressure field is between

15-23 mmHg.

The wall displacement during a cardiac cycle is investigated. Figure 11.9 shows

the wall displacement at the peak of diastole (t=1.95s). The results indicate that

the wall displacement varies periodically between 0 and 0.049 cm and the highest

displacement is present at the exit boundary.

To capture the effect of wall-interaction on wall shear stresses (WSS) and wall

shear rate (WSR), we investigate the models with 50% and 75%-area severity at various

instants including the beginning of systole (t=1.3s), the peak of the systole(t=1.55s),

the beginning of diastole (t=1.75s) and the peak of diastole (t=1.95s). The solutions

are plotted along a longitudinal line on the interface between the lumen region and the

wall region. The results as shown in Figures 11.10(a)-(b) indicate that at the peak of
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(a) 50% stenotic artery

(b) 75% stenotic artery

Figure 11.7: Pressure distribution along a longitudinal line on the interface between
the lumen region and the arterial wall during a cardiac cycle.
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(a) (b)

Figure 11.8: Pulsatile patterns of blood flow, pressure field and shear rate around the
stenosis site in the lumen region (a) 50%-area severity (b) 75%-area severity.

diastole (t=1.95s), for the 50% stenotic artery, wall shear stresses and wall shear rate

around the stenosis site vary between 100 - 330 dyn/cm2, and 2,000 - 9,000 s−1. For

the 75% stenotic artery, wall shear stresses and wall shear rate around the stenosis site

varies between 100 - 580 dyn/cm2, and 2,000 - 17,500 s−1 as shown in Figure 8(c)-(d).

It indicates that high wall shear stresses and high wall shear rate appear around the

stenosis site. Higher area severity leads to higher wall shear stresses and higher wall

shear rate around the stenosis site.
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Figure 11.9: Wall displacement during a cardiac cycle at the peak of diastole.
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(a) (b)

(c) (d)

Figure 11.10: Wall shear stresses and wall shear rate along a longitudinal line on the
interface between the lumen region and the arterial wall of stenotic arteries: (a-b)
50%-area severity; (c-d) 75%-area severity.
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APPENDICES

A. Linear Space

Definition A.1.1 A linear space consists of a set V and two operations:

(u, v) → u + v from V × V into V ;

(k, v) → kv from <× V into V

such that the following properties hold for every u, v, w ∈ V and α, β ∈ <

1. u + v = v + u (commutativity)

2. u + (v + w) = (u + v) + w (distributivity)

3. There exists a unique element in V , denoted by 0, such that

0 + v = v + 0 = v

4. For every v ∈ V there exists a unique element in V , denoted by −v, such that

−v + v = 0 = v + (−v)

5. α(u + v) = αu + αv
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6. (α + β)u = αu + βu

7. α(βu) = (αβ)u

8. 1 · u = u

Definition A.1.2 Let V be a linear space. A nonempty set V0 ⊂ V is called a linear

subspace of V if for u, v ∈ V0 and α ∈ <, u + v and αv ∈ V0.

Definition A.1.3 Let V be a linear space and {vi} be a finite subset of V . A linear

combination of vi is a vector of the form
∑

αivi with any scalar αi. For any nonempty

subset E of V , we set

span E = {
∑

αivi : αi ∈ <, vi ∈ E}

Definition A.1.4 Let V be a linear space and A be a nonempty subset of V . A is

dependent iff for distinct vectors vi ∈ A, there exist some nonzero coefficients such that
∑

αivi = 0. A is independent iff
∑

αivi = 0 only when all coefficients are zero.

Definition A.1.5 Let V and W be linear spaces. A map L : V → W is linear from

V into W , iff

L(v1 + v2) = L(v1) + L(v2), ∀v1, v2 ∈ V

L(αv) = αL(v) ∀α ∈ <, ∀v ∈ V

We call a linear operator from V to < as a linear functional on V or a linear form on

V .

Definition A.1.6 Let V1, V2 and W be linear spaces. A map a : V1 × V2 → W is a

bilinear operator from V1 × V2 into W iff

∀v̄1 ∈ V1, v2 → a(v̄1, v2) is linear on V2
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∀v̄2 ∈ V2, v1 → a(v1, v̄2) is linear on V1.

For W = <, a mapping a is a bilinear form on V1 × V2.

For linear spaces V and W , if V0 and W0 are subspaces of V and W respectively

and L is a linear operator from V into W , then L(V0) and L−1(W0) are subspaces of

W and V , respectively. The range and the kernel of L defined by

R(L) = L(V ) and ker L = L−1{0}.

are also subspaces of W and V , respectively.

Definition A.1.7 Let a be a linear operator from V ×V into W . The symmetric part

as of a is defined by

as(u, v) =
1
2
(a(u, v) + a(v, u)).

A bilinear operator a is said to be symmetric iff a ≡ as

Definition A.1.8 If V is a linear space, a map

φ : V → <

is called a quadratic form on V iff there exists a bilinear form a on V × V such that

φ(v) = a(v, v) ∀v ∈ V.

Definition A.1.9 For linear spaces V and W , a map L : V → W is an algebraic

isomorphism from V onto W iff




L is linear;
ker L = {0};
R(L) = W.

For example, if Ω is an open subset of <n, =(Ω) is the set of all real functions,

then the subset of all v ∈ =(Ω) which are continuous is a subspace of =(Ω) and is

denoted by C0(Ω).
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Definition A.1.10 A seminorm on a linear space V is a map v → |v| from v into

[0,∞) such that

|u + v| ≤ |u|+ |v| and |λu| = |λ||u| ∀u, v ∈ V, ∀λ ∈ <

We call a linear space with a norm on it as a normed space and denote seminorms and

norms by | · | and ‖ · ‖, respectively.

Definition A.1.11 Let V be a normed space with the norm ‖ · ‖. If A ⊂ V, v0 ∈ V ,

and a sequence {vm} ∈ V , then

• a ball of center v0 ∈ V and radius r is the set

Br(v0) = {v ∈ V : ‖v − v0‖ < r};

• {vn} converges strongly to v0 ∈ V iff lim ‖v − v0‖ = 0;

• {vn} satisfies the Cauchy condition iff ∀ε > 0, ∃nε such that ∀n,m > nε ‖vn −

vm‖ < ε;

• A is open iff ∀v ∈ A, ∃r > 0 such that Br(v) ⊂ A;

• A is closed iff vn ∈ A and mapping vn → v implies v ∈ A;

• A is dense iff ∀v ∈ V there exists a sequence {vn} ∈ A such that vn → v;

• A is bounded iff there exists a constant M such that ‖v‖ ≤ M ∀v ∈ A;

• The closure Ā of A is the smallest closed set containing A;

• The interior Å of A is the largest open set contained in A;
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Definition A.1.12 Let V and W be normed spaces and f : A → W a map defined on

a subset A of V . Then f is continuous at a point v0 ∈ A iff vn ∈ A and vn → v0 in

V imply f(vn → f(v0) in W . f is called continuous in A iff it is continuous at every

point in A.

Definition A.1.13 An open subset Ω of <n is called smooth iff it is connected and

bounded and satisfies the following conditions:

For every x0 ∈ ∂Ω there exist r(x0) > 0 and a coordinate system (ξ1, . . . , ξn) with

origin at x0 such that

Ω
⋂

Br(x0)(x0) = {(ξ1, . . . , ξn) ∈ Br(x0) : ξn > ζx0(ξ1, . . . , ξn−1)} and

∂Ω
⋂

Br(x0)(x0) = {(ξ1, . . . , ξn) ∈ Br(x0) : ξn = ζx0(ξ1, . . . , ξn−1)},

where ζx0 is a function defined on <n−1 continuous with all the derivatives of every

order.

Definition A.1.14 An open subset Ω of <n is called a convex polygon iff it is bounded

and there exists a finite number m of scalars ci and linear maps Li : <n → < such that

Ω = {x ∈ <n : Lix > ci, i = 1, . . . , m}.

Definition A.1.15 An open subset Ω of <n is called a polygon iff it is connected and

there exists a finite number of convex polygons Ωj such that Ω = interior of
⋃

Ω̄j .

Let u be a smooth function defined on domain Ω and α = (α1, α2, . . . , αn) be an

n-tuple of nonnegative integers and denote |α| = ∑
αi. Then the αth derivative of u is

denoted by

Dαu =
∂α1+α2+...+αnu

∂xα1
1 ∂xα2

2 . . .
∂xαn

n =
∂|α|u

∂xα1
1 ∂xα2

2 . . .
∂xαn

n .
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B. Operations on Vectors

Let u and v be vectors and q be a real-valued function.

∇ · (qv) = q∇ · v +∇q · v, (B.1)

∇× (qv) = q∇× v +∇q × v, (B.2)

∇ · (u× v) = (∇× u) · v − u · (∇× v), (B.3)

∇×∇× v = ∇(∇ · v)−4v, (B.4)

v × (∇× v) = 1
2∇(v2)− (v · ∇)v, (B.5)

∇× (u× v) = (v · ∇)u− v(∇ · u)− (u · ∇)v + u(∇ · v). (B.6)

C. Green’s Formula

For u, v and q are smooth function,

Integrating (B.1) and using the Gauss divergence theorem lead to

(∇ · v, q) + (v, ∇q) = < n · v, q > . (C.1)

Substituting v = ∇p into (C.1) yields

(4p, q) + (∇p, ∇q) = < n · ∇p, q > . (C.2)

Substituting q = ∇ · u into (C.1) yields

(∇ · v, ∇ · u) + (v, ∇(∇ · u)) = < n · v, ∇ · u > . (C.3)

Replacing v by ∇× v in (C.1) leads to

(∇× v, ∇q) = < n · (∇× v), q > . (C.4)

Integrating (B.3) and using the Gauss divergence theorem lead to

(∇× u, v)− (u, ∇× v) (C.5)

Substituting u = ∇q into (C.5) yields

(∇× v, ∇q) = − < n×∇q, v > = < ∇q, n× v > . (C.6)

Replacing v by ∇× v in (C.5) yields

(∇× u, ∇× v)− (u, ∇×∇× v) = < n× u, ∇× v > . (C.7)
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interpolating function, 45

interpolation error, 77

iso-parametric map, 103

lagrange polynomial, 56

Laplace operator, 68

linear equation, 24

master element, 56,95

mesh, 54

Monte Carlo Method, 29

natural boundary conditions, 70

Neumann type, 26

non-linear, 24

parabolic equation, 26,85

partial differential equations, 24

Pascal’s triangle, 75

perturbation method, 29

piecewise function, 46

poisson equation, 25

power series method, 29

quadrilateral element, 104

quasi-linear, 24

rectangular element, 75
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stability, 88
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